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“Best Practices”

• Cost the least
• Provide the most value
• via several intangibles

– homogeneity
– consistency
– repeatability
– documentation
– etc. 
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Patterson’s cost model

• Cost of downtime ≈ cost of revenue lost + 
cost of work lost.

• Patterson, “A simple model of the cost of 
downtime”, Proc. LISA 2002

• Controversial: downtime cost is 
“intangible”. 

• Or is it? 
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“Best” is relative!

• Patching systems immediately causes 
more downtime than waiting for patches to 
stabilize.

• Cowan et al, “Scheduling the application of 
security patches for optimal uptime”, Proc. 
LISA 2002. 
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Time spent waiting

• Cost of system administration = cost of 
tangible assets + cost of intangibles

• For most SA’s, cost of tangible assets is 
out of our control.  

• Claim 1: The intangible cost of system 
administration is approximately 
proportional to (cumulative) time spent 
waiting for responses to requests
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Learning from real data

• Data source: RT queue, Tufts ECE/CS.
• Data duration ≈ 400 days. 
• What is the structure of real data? 
• Is there any easy way to describe the 

schedule of ticket arrivals and service?
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Ticket history
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Measuring time 
spent waiting

• Time spent waiting is a function of 
– arrival rate: number of requests coming in
– service rate: how fast requests can be 

processed
– number of “workers” available
– number of “clients” affected.

• Where
– arrivals include reconfigurations and refits
– rate is reciprocal of expected service time
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Memory

• A process is memoryless if the next event 
does not depend upon the history of prior 
events.
– memoryless arrivals: “Poisson process” 

λ = arrival rate, mean inter-arrival time = 1/λ, 
standard deviation of inter-arrival times = 1/λ.

– memoryless service: “exponential service 
time”.

µ = service rate, mean service time = 1/µ, 
standard deviation of service time     = 1/µ.
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Memoryless is nice 
(but perhaps impractical)

• Memoryless arrivals: lots of identical 
customers behaving independently. 

• Arrival processes with memory: bursty 
behavior, such as a virus infection, spam, 
or DDoS attack. 

• Advantage of memoryless models: closed-
form solutions to system performance 
(from capacity planning)
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Multiclass systems

• Typical site has multiple classes of 
requests; some are more complex or take 
longer than others. 

• At first glance, no exponential service 
times. 

• Throw away long times (outliers); 
exponential service times emerge!

• Claim 2: Documentation keeps 
requests from waiting indefinitely. 
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Tickets filtered



LISA-2005
couch@cs.tufts.edu

Tufts University 
Computer Science

Quandary of arrivals

• At first glance arrivals aren’t Poisson
• But (a month of struggling later!)

– correct for DST
– sample over one-hour intervals
– correct sampling for sparse event frequency
– skip holidays

• And each hour exhibits a roughly Poisson 
arrival rate!
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Ticket creation

lunch!
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Ticket resolution
student 
responsible
for resolving 
tickets starts 
workday!

staff arrives
and handles
nightly buildup
in queue
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Quantifying time 
spent waiting

• Our data shows that most requests are 
actually accomplished at our site in 
(statistically) comparable times. 

• How does one estimate the time needed 
for a particular request?

• One example: troubleshooting chart. 
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Simple troubleshooting chart
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end
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Convert to program graph
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Convert from graph to tree
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Collapse to decision tree
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Compute expected value
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Notes on the decision tree

• Times tX describe the capabilities of 
administrative staff. 

• Probabilities P(Y) describe the site’s 
characteristics and the likelihood of failures.

• P(H«|D): probability of H happening given that D 
happened in the past 

• [temporal conditional probability; not Bayesian; 
Bayesian identities don’t hold! Another month of 
suffering to figure this out!]
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Application: should I check the 
DHCP server or client first?
• Answer: depends upon site characteristics. 
• If the likelihood is that there is a problem with X, 

should check X first.
• Consequences of incorrect choice: increased 

cost.
• Humans automatically compensate for poor 

troubleshooting order. 
• Claim 3: Best practices are relative to site and 

staff capabilities.
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Bang!

• The preceding method is “white box”; it 
measures the practice directly. 

• Applying the preceding argument for a 
non-trivial troubleshooting chart results in 
an exponential explosion in chart 
complexity. 

• How do we deal with huge charts or 
complex processes? 

• Answer: “black box” estimation. 



LISA-2005
couch@cs.tufts.edu

Tufts University 
Computer Science

Estimators from 
Software Engineering

• Time for service is approximately a function of 
the number of branches in a troubleshooting 
chart. 

• Number of branches is approximately a function 
of heterogeneity/diversity of site and services 
provided.

• So if we quantify diversity/complexity of service 
environment, we can estimate service time.

• “Function points”: a way of quantifying 
complexity of service. 
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Non-product systems

• We understand a great deal about 
“product systems” in which components 
act independently. 

• System administrators are a non-product 
system; they communicate and interact 
with each other.

• Best way to estimate behavior of non-
product systems: discrete event 
simulation. 
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A simple simulation 
experiment

• Assume c administrators, four classes of 
service (from extremely short to extremely 
long service times), independent arrival 
rates for classes. 

• Theory: a single class system is stable if 
λ/cµ<1 and diverges to infinite wait time 
otherwise. 

• What happens when a multi-class system 
approaches the saturation point?
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Diminishing returns
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Divergence!
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Chaos!
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Running near the edge

arrivals spread out bursty arrivals

events in a burst, versus events spread out!
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Summary

• cumulative service time ≈ intangible cost 
of operations

• computable from practice graph: function 
of staff expertise and site composition. 

• estimable from guesses for branch depth 
and task length for each task.

• total effect estimable via discrete event 
simulation. 
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Conclusions

• We can estimate the cost of practice by 
indirect methods. 

• Best practices are always site relative!
• Running near absolute capacity causes 

chaotic increases in wait time. 
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What’s next?

• Simulation studies of particular aspects of the 
practice: 
– communication vs. documentation,
– scripting vs. cfengine

• Quantification of function point models 
– various sizes and kinds of sites. 
– complexities of kinds of service. 

• Effects of human learning
– Insignificant for repetitive tasks. 
– Significant for one-time tasks. 
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Epilogue
• More questions than answers:

– How can we best use this as a planning tool?
– How much can we trust it? 
– How to fill in gaping holes in knowledge? 

• The potential:
– better/cheaper/more valuable administrative 

practices.
– Ability to ask cheap “what if” questions with 

reasonable estimates of task complexity.  
– better understanding of critical capacity.
– happily ever after.
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Questions?

Alva Couch (couch@cs.tufts.edu)
Ning Wu (ningwu@cs.tufts.edu) 
Hengky Susanto (hsusan0a@cs.tufts.edu)
Tufts University Computer Science
Medford, MA 02155

Note: we plan to make the discrete event simulator 
open source at some future time after we clean 
up the user interface. 
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