
LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Toward a cost model for
system administration

Alva Couch
Ning Wu

Hengky Susanto
Tufts University

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Executive Summary

SA models of
complexity
and service

Models of
cost and

complexity

Software
Engineering

tickets and
completions

Real SA
performance

data

quantifyinspire

Depends
upon practice

Intangible
cost of SA

"best practice"
documents

SA risk
models

ins
pir

e

Models of task
arrival and
throughput

Capacity
planning

lead to

cost varies with
environment

SA model of
troubleshooting

cost

utilized

utilized

utilized
Estimated

waiting timeutilized

proportional to

Out of SA's
control

Tangible cost
of SA

Cost of SA
includesinclu

des

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

System Administrator’s
Summary

new metrics
for complexity
and process

efficiency
help to define

new ways
to improve

process

software
engineering

theory

risk
assessment
techniques

operating
systems
theory

help to define

help to define

help to define

suggests

new ways to
compute

consequences of
decisions

lower cost,
higher valueleads to

happily ever
afterleads to

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

“Best Practices”

• Cost the least
• Provide the most value
• via several intangibles

– homogeneity
– consistency
– repeatability
– documentation
– etc.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Patterson’s cost model

• Cost of downtime ≈ cost of revenue lost +
cost of work lost.

• Patterson, “A simple model of the cost of
downtime”, Proc. LISA 2002

• Controversial: downtime cost is
“intangible”.

• Or is it?

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

“Best” is relative!

• Patching systems immediately causes
more downtime than waiting for patches to
stabilize.

• Cowan et al, “Scheduling the application of
security patches for optimal uptime”, Proc.
LISA 2002.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Time spent waiting

• Cost of system administration = cost of
tangible assets + cost of intangibles

• For most SA’s, cost of tangible assets is
out of our control.

• Claim 1: The intangible cost of system
administration is approximately
proportional to (cumulative) time spent
waiting for responses to requests

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Learning from real data

• Data source: RT queue, Tufts ECE/CS.
• Data duration ≈ 400 days.
• What is the structure of real data?
• Is there any easy way to describe the

schedule of ticket arrivals and service?

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Ticket history

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Measuring time
spent waiting

• Time spent waiting is a function of
– arrival rate: number of requests coming in
– service rate: how fast requests can be

processed
– number of “workers” available
– number of “clients” affected.

• Where
– arrivals include reconfigurations and refits
– rate is reciprocal of expected service time

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Memory

• A process is memoryless if the next event
does not depend upon the history of prior
events.
– memoryless arrivals: “Poisson process”

λ = arrival rate, mean inter-arrival time = 1/λ,
standard deviation of inter-arrival times = 1/λ.

– memoryless service: “exponential service
time”.

µ = service rate, mean service time = 1/µ,
standard deviation of service time = 1/µ.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Memoryless is nice
(but perhaps impractical)

• Memoryless arrivals: lots of identical
customers behaving independently.

• Arrival processes with memory: bursty
behavior, such as a virus infection, spam,
or DDoS attack.

• Advantage of memoryless models: closed-
form solutions to system performance
(from capacity planning)

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Multiclass systems

• Typical site has multiple classes of
requests; some are more complex or take
longer than others.

• At first glance, no exponential service
times.

• Throw away long times (outliers);
exponential service times emerge!

• Claim 2: Documentation keeps
requests from waiting indefinitely.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Tickets filtered

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Quandary of arrivals

• At first glance arrivals aren’t Poisson
• But (a month of struggling later!)

– correct for DST
– sample over one-hour intervals
– correct sampling for sparse event frequency
– skip holidays

• And each hour exhibits a roughly Poisson
arrival rate!

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Ticket creation

lunch!

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Ticket resolution
student
responsible
for resolving
tickets starts
workday!

staff arrives
and handles
nightly buildup
in queue

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Quantifying time
spent waiting

• Our data shows that most requests are
actually accomplished at our site in
(statistically) comparable times.

• How does one estimate the time needed
for a particular request?

• One example: troubleshooting chart.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Simple troubleshooting chart

got an
address?

no ip address

got an
address?

yes

no

DHCP locally
enabled?

Enable DHCP

no

yes dhcpd
running?

Restart dhcpd

yes

yes

no

no

end

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Convert to program graph

B

A

F
yes

no

C

D

no

yes
G

H

yes

yes

no

no

E

D

A

E

H

C

G

F

B

flow

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Convert from graph to tree

D

A

E

H

C

G

F

B

D

A

E

H

G

F

B

E

E E

H

G

F

E

C

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Collapse to decision tree

tD+tF
+tG

0

tH

tB

0

0

tC

0

tH 0

tF+tG

1-P(C)P(C)

1-P(D)P(D)

1-P(H«|¬D)P(H«|¬D)
P(H«|D) 1-P(H«|D)

D

A

E

H

G

F

B

E

E E

H

G

F

E

C

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Compute expected value

tD+tF
+tG

0

tH

tB

0

0

tC

0

tH 0

tF+tG

1-P(C)P(C)

1-P(D)P(D)

1-P(H«|¬D)P(H«|¬D)P(H«|D) P(E«|D)

expected wait =
t1 + pt2+(1-p)t3

expected wait = tB+P(C) [
tC+P(D)[tD+tF+tG+P(H«|D)tH)+(1-P(D))(tF+tG+P(H«|¬D)tH]

]

t2 t3

t1

p 1-p

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Notes on the decision tree

• Times tX describe the capabilities of
administrative staff.

• Probabilities P(Y) describe the site’s
characteristics and the likelihood of failures.

• P(H«|D): probability of H happening given that D
happened in the past

• [temporal conditional probability; not Bayesian;
Bayesian identities don’t hold! Another month of
suffering to figure this out!]

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Application: should I check the
DHCP server or client first?
• Answer: depends upon site characteristics.
• If the likelihood is that there is a problem with X,

should check X first.
• Consequences of incorrect choice: increased

cost.
• Humans automatically compensate for poor

troubleshooting order.
• Claim 3: Best practices are relative to site and

staff capabilities.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Bang!

• The preceding method is “white box”; it
measures the practice directly.

• Applying the preceding argument for a
non-trivial troubleshooting chart results in
an exponential explosion in chart
complexity.

• How do we deal with huge charts or
complex processes?

• Answer: “black box” estimation.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Estimators from
Software Engineering

• Time for service is approximately a function of
the number of branches in a troubleshooting
chart.

• Number of branches is approximately a function
of heterogeneity/diversity of site and services
provided.

• So if we quantify diversity/complexity of service
environment, we can estimate service time.

• “Function points”: a way of quantifying
complexity of service.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Non-product systems

• We understand a great deal about
“product systems” in which components
act independently.

• System administrators are a non-product
system; they communicate and interact
with each other.

• Best way to estimate behavior of non-
product systems: discrete event
simulation.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

A simple simulation
experiment

• Assume c administrators, four classes of
service (from extremely short to extremely
long service times), independent arrival
rates for classes.

• Theory: a single class system is stable if
λ/cµ<1 and diverges to infinite wait time
otherwise.

• What happens when a multi-class system
approaches the saturation point?

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Diminishing returns

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Divergence!

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Chaos!

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Running near the edge

arrivals spread out bursty arrivals

events in a burst, versus events spread out!

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Summary

• cumulative service time ≈ intangible cost
of operations

• computable from practice graph: function
of staff expertise and site composition.

• estimable from guesses for branch depth
and task length for each task.

• total effect estimable via discrete event
simulation.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Conclusions

• We can estimate the cost of practice by
indirect methods.

• Best practices are always site relative!
• Running near absolute capacity causes

chaotic increases in wait time.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

What’s next?

• Simulation studies of particular aspects of the
practice:
– communication vs. documentation,
– scripting vs. cfengine

• Quantification of function point models
– various sizes and kinds of sites.
– complexities of kinds of service.

• Effects of human learning
– Insignificant for repetitive tasks.
– Significant for one-time tasks.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Epilogue
• More questions than answers:

– How can we best use this as a planning tool?
– How much can we trust it?
– How to fill in gaping holes in knowledge?

• The potential:
– better/cheaper/more valuable administrative

practices.
– Ability to ask cheap “what if” questions with

reasonable estimates of task complexity.
– better understanding of critical capacity.
– happily ever after.

LISA-2005
couch@cs.tufts.edu

Tufts University
Computer Science

Questions?

Alva Couch (couch@cs.tufts.edu)
Ning Wu (ningwu@cs.tufts.edu)
Hengky Susanto (hsusan0a@cs.tufts.edu)
Tufts University Computer Science
Medford, MA 02155

Note: we plan to make the discrete event simulator
open source at some future time after we clean
up the user interface.

mailto:couch@cs.tufts.edu�
mailto:ningwu@cs.tufts.edu�
mailto:hsusan0a@cs.tufts.edu�

	Toward a cost model for system administration
	Executive Summary
	System Administrator’s �Summary
	“Best Practices”
	Patterson’s cost model
	“Best” is relative!
	Time spent waiting
	Learning from real data
	Ticket history
	Measuring time �spent waiting
	Memory
	Memoryless is nice �(but perhaps impractical)
	Multiclass systems
	Tickets filtered
	Quandary of arrivals
	Ticket creation
	Ticket resolution
	Quantifying time �spent waiting
	Simple troubleshooting chart
	Convert to program graph
	Convert from graph to tree
	Collapse to decision tree
	Compute expected value
	Notes on the decision tree
	Application: should I check the DHCP server or client first?
	Bang!
	Estimators from �Software Engineering
	Non-product systems
	A simple simulation �experiment
	Diminishing returns
	Divergence!
	Chaos!
	Running near the edge
	Summary
	Conclusions
	What’s next?
	Epilogue
	Questions?

