Seeking Closure in an Open
World: a Behavioral Agent
Approach to Configuration

Management

Alva Couch, John Hart,
Elizabeth G. Idhaw, Dominic Kallas

{couch,hart,greenlee,dkallas}@cs.tufts.edu

Goals

* Long range goal Is portable validation:
validate a configuration once, works the
same everywhere(!).

e Short-range goals include developing:

— an algebraic model of configuration
management

— Relationships between that model and
established mathematical knowledge

— examples of next-generation components and
interfaces

Pressures

S0 many parameters
So little time

Unclear semantics
Latent effects

... a sea of minutiae

Closures and Conduits

A closure is a “domain of semantic
predictability” where parameter bindings make
sense. “What you ask for is what you get.”

A condulit is an approved mechanism for
communication between closures

Contract: if you use only the conduit, and all will
work as documented

Can close the box and stop remembering the
minutiae that make the closure work

Closest thing we have to a unit of modularity

Closure Is not new

* Network appliances

* Highly reliable subsystems
(e.g., DHCP and DNS)

e Switch and grid fabrics

« Anything that always does exactly what
you say.

Creating a
requirements

DesV !\E‘xtract C I OsSure

n | : @)
8 processes . behavior 3
S Implement | Codify @
£ v i ' 1
3 parameters tests <
5 Set values Measure ®
T v v effects =
¢ configurations states 3
E l Select ' 3
% subsets 0
policies

‘Coherence

closure

Kinds of Configuration Parameters

 Behavioral (exterior): determine what
user sees

* Incidental (interior): no effect on user
perception

— Dependent: determined by choices for
behavioral parameters

— Environmental: determined by operating
environment

— Arbitrary: value doesn’t affect behavior

Example: web server

« Exterior (behavioral) parameters
— What content is served?
— Response time/robustness/reliability
— Bindings to other services (e.g., databases)

 |Interior (Incidental) parameters

— Where to locate software (environmental)

— Where content is stored (depends upon response
time, robustness, etc)

— Protection model for files (depends on content)
« Apache httpd.conf: about 80% interior

SA and SQA

System administration is the opposite of
software quality assurance

In SQA, we want to locate problems In
software

In system administration, we want to
avold problems

Primary technique: limit achievable
configuration states; validate all possible
states

Minimizing Achievable State

Always use unvarying order for
configuration operations

Generate whole configuration from same
declaration every time

Always copy a validated state

Always use same values for arbitrary
parameters

Enforce invariant structure for
configuration files

Constraints and Expense

 Interior (incidental) parameters are under-
constrained
— Incidental heterogeneity
— difficulty learning or troubleshooting
— maintenance expense!

e By contrast, exterior parameters are
strongly constrained
— enforced homogeneity
— shorter learning curve
— cheaper process maturity!

(Intelligent?) Agents

Our approach: interpose an agent
between system administrator and system

Input to agent: exterior parameters

Output from agent: settings for all
parameters, including incidental ones

Minimal intelligence: maps from
desired exterior behavior to incidental
configuration

Cost and Value

« Value of agents: site consistency and
homogeneity improve portability of validation

e Cost of agents: must represent enough exterior
data to completely determine incidental data
— Must define service constraints
— Must supply all content through the agent

* Result: agent-controlled web servers require
content staging!

Theory and Practice

e Theory: how do closures combine?
— Formal definitions
— Preliminary results

* Practice: what building blocks does one
need to create a closure?
— Incremental changes to configuration files
— Service provision architecture

Theory: Preliminary Results

e Can easlly construct compositions of
closures that are not closures.

« Key component in maintaining closure
during composition Iis awareness of
parameter overlap between closures

Theory: Some Subtleties

Closure A dominates closure B if for every
reasonable configuration of A there Is a
matching and consistent configuration of B.

Dominance isn’t transitive: If A dominates B and
B dominates C, then A need not dominate C

Even if dominance Is transitive in a set of
closures, this does not assure global
consistency

Problem: lack of parameter knowledge

Foolproof Composition

Dominance Parameter
hierarchy hierarchy

/ \ ‘

O

A — B means

. N Containment represents
A controls B

parameter structure”

Practice: Preliminary Prototypes

e Build closures based upon transactional
file control, not stream editing

e Build coherent service architecture by
Interacting with file closures

Incremental File Editing

/etc/services
l oarse ——— XML structural declaration

services.xml

l change Editing commands

New services.xml
l render

XSLT format

New /etc/services

Declaring File Structure (once)

<xmft:file path=""/etc/services">
<xmft:repeat sorted-by="port" keys='"'service:port+prot"” name="lines">
<xmft:line>
<xmft:var type="string" desc="'service name' name="'service*“/>
<xmft:whitespace/>
<xmft:var type="integer" desc="1p port number'™ name="‘port*“/>
<xmft:text>/</xmft:text>
<xmft:choice type="protocol name' name="prot''>
<xmFt:option><xmft:text>tcp</xmft: text></xmft:option>
<xmft:option><xmft:text>udp</xmft: text></xmft:option>
</xmft:choice>
<xmft:repeat>
<xmft:whitespace/>
<xmft:var type="'string"” desc="‘protocol alias" name="alias'>
</xmft:var>
</xmft:repeat>
</xmft:line>
</xmft:repeat>
</xmft:file>

Preliminary Editing Operations

e Insert what (service="tftp”,
port:'6900', prot0='udp')

e delete where (service="tftp”
and proto="udp”)

e update where (service="tftp’)
what (port="8800")

20-20 Hindsight: Ideal Editing

assert service=tftp port=6900
proto=udp

retract service=tftp

Service Synthesis: FTP

configuration
service
/ \
file package process
servié\ ftp iInetd

Inetd
/etc/services ‘
/etc/inetd.conf

Conclusions

Our lives as system administrators are full of
Interdependent minutiae

Behavioral thinking can determine which are
Important and induce a modularity of effect

Agents can manage modules and shield us from
dealing with non-behavioral parameters

Result is increased consistency, lower bug
exposure, and lower administrative cost.

| essons Learned

* We seek the rosetta stone that will link
system administration to the rest of
computer science and engineering, as well
as mathematical knowledge

« Subtleties of our goals and practices
cause surprising and subtle results

e Cannot simply apply known theorems;

must repeat their proofs and see if they
still work!

Current Status

o Software still prototype

 New theory:

— Can split validation into two phases:
1. Avoid effects of latent variables
2. Validate outcome

— Avoidance of latent problems is statically
verifiable in configuration scripts

Acknowledgements

Lssconf working group

Configuration Management and Infrastructure
workshops and BOFs

CFengine (happy 10 birthday!) ¥ &
Network Appliance Corp -

Contact

« Emall: couch@cs.tufts.edu

o Speaker table: moved to 5:30 pm session
(due to unavoidable conflicts)

mailto:couch@cs.tufts.edu�

	Seeking Closure in an Open World: a Behavioral Agent Approach to Configuration Management
	Goals
	Pressures
	Closures and Conduits
	Closure is not new
	 Creating a�Closure
	Kinds of Configuration Parameters
	Example: web server
	SA and SQA
	Minimizing Achievable State
	Constraints and Expense
	(Intelligent?) Agents
	Cost and Value
	Theory and Practice
	Theory: Preliminary Results
	Theory: Some Subtleties
	Foolproof Composition
	Practice: Preliminary Prototypes
	Incremental File Editing
	Declaring File Structure (once)
	Preliminary Editing Operations
	20-20 Hindsight: Ideal Editing
	Service Synthesis: FTP
	Conclusions
	Lessons Learned
	Current Status
	Acknowledgements
	Contact

