
Seeking Closure in an Open 
World: a Behavioral Agent 
Approach to Configuration 

Management

Alva Couch, John Hart, 
Elizabeth G. Idhaw, Dominic Kallas

{couch,hart,greenlee,dkallas}@cs.tufts.edu



Goals

• Long range goal is portable validation: 
validate a configuration once, works the 
same everywhere(!).

• Short-range goals include developing: 
– an algebraic model of configuration 

management
– Relationships between that model and 

established mathematical knowledge
– examples of next-generation components and 

interfaces 



Pressures

• So many parameters
• So little time
• Unclear semantics 
• Latent effects
• … a sea of minutiae



Closures and Conduits
• A closure is a “domain of semantic 

predictability” where parameter bindings make 
sense. “What you ask for is what you get.” 

• A conduit is an approved mechanism for 
communication between closures

• Contract: if you use only the conduit, and all will 
work as documented

• Can close the box and stop remembering the 
minutiae that make the closure work

• Closest thing we have to a unit of modularity



Closure is not new

• Network appliances
• Highly reliable subsystems 

(e.g., DHCP and DNS)
• Switch and grid fabrics
• Anything that always does exactly what 

you say.



Creating a
Closure

tests

statesconfigurations
Set values

Select 
subsets

policies

Measure 
effects

closure
Coherence

behavior
Codify

parameters

processes

requirements
Design

Implement

Extract
S

of
tw

ar
e 

E
ng

in
ee

rin
g 

pr
oc

es
s C

losure E
ngineering process



Kinds of Configuration Parameters

• Behavioral (exterior): determine what 
user sees

• Incidental (interior): no effect on user 
perception
– Dependent: determined by choices for 

behavioral parameters
– Environmental: determined by operating 

environment 
– Arbitrary: value doesn’t affect behavior



Example: web server
• Exterior (behavioral) parameters

– What content is served? 
– Response time/robustness/reliability
– Bindings to other services (e.g., databases)

• Interior (incidental) parameters
– Where to locate software (environmental) 
– Where content is stored (depends upon response 

time, robustness, etc)
– Protection model for files (depends on content)

• Apache httpd.conf: about 80% interior



SA and SQA

• System administration is the opposite of 
software quality assurance

• In SQA, we want to locate problems in 
software

• In system administration, we want to 
avoid problems

• Primary technique: limit achievable 
configuration states; validate all possible 
states



Minimizing Achievable State

• Always use unvarying order for 
configuration operations

• Generate whole configuration from same 
declaration every time

• Always copy a validated state
• Always use same values for arbitrary 

parameters
• Enforce invariant structure for 

configuration files



Constraints and Expense

• Interior (incidental) parameters are under-
constrained
→ incidental heterogeneity 
→ difficulty learning or troubleshooting
→ maintenance expense!

• By contrast, exterior parameters are 
strongly constrained
→ enforced homogeneity
→ shorter learning curve 
→ cheaper process maturity!



(Intelligent?) Agents

• Our approach: interpose an agent 
between system administrator and system

• Input to agent: exterior parameters
• Output from agent: settings for all 

parameters, including incidental ones
• Minimal intelligence: maps from 

desired exterior behavior to incidental 
configuration



Cost and Value

• Value of agents: site consistency and 
homogeneity improve portability of validation

• Cost of agents: must represent enough exterior 
data to completely determine incidental data 
– Must define service constraints
– Must supply all content through the agent

• Result: agent-controlled web servers require
content staging!



Theory and Practice

• Theory: how do closures combine?
– Formal definitions
– Preliminary results 

• Practice: what building blocks does one 
need to create a closure?
– Incremental changes to configuration files
– Service provision architecture



Theory: Preliminary Results

• Can easily construct compositions of 
closures that are not closures. 

• Key component in maintaining closure 
during composition is awareness of 
parameter overlap between closures



Theory: Some Subtleties

• Closure A dominates closure B if for every 
reasonable configuration of A there is a 
matching and consistent configuration of B. 

• Dominance isn’t transitive: If A dominates B and 
B dominates C, then A need not dominate C

• Even if dominance is transitive in a set of 
closures, this does not assure global 
consistency

• Problem: lack of parameter knowledge



Foolproof Composition
Dominance
hierarchy

Parameter
hierarchy

A

B C

D E

A

B

C

D E

A → B means 
“A controls B”

Containment represents 
parameter structure”



Practice: Preliminary Prototypes

• Build closures based upon transactional 
file control, not stream editing

• Build coherent service architecture by 
interacting with file closures



Incremental File Editing

/etc/services

services.xml

XML structural declaration

New services.xml

New /etc/services

XSLT format

parse

change

render

Editing commands



Declaring File Structure (once)
<xmft:file path="/etc/services"> 
<xmft:repeat sorted-by="port" keys="service:port+prot" name="lines">          
<xmft:line>
<xmft:var type="string" desc="service name" name="service“/> 
<xmft:whitespace/>
<xmft:var type="integer" desc="ip port number" name="port“/> 
<xmft:text>/</xmft:text>
<xmft:choice type="protocol name" name="prot"> 
<xmft:option><xmft:text>tcp</xmft:text></xmft:option> 
<xmft:option><xmft:text>udp</xmft:text></xmft:option> 

</xmft:choice>
<xmft:repeat> 
<xmft:whitespace/> 
<xmft:var type="string" desc="protocol alias" name="alias">
</xmft:var>

</xmft:repeat> 
</xmft:line> 

</xmft:repeat> 
</xmft:file>



Preliminary Editing Operations

• insert what (service='tftp',  
port='6900', proto='udp')

• delete where (service='tftp' 
and proto='udp')

• update where (service='tftp’) 
what (port='8800')



20-20 Hindsight: Ideal Editing

assert service=tftp port=6900 
proto=udp

retract service=tftp



Service Synthesis: FTP
configuration

service

file package process

/etc/services

services
inetd

/etc/inetd.conf

ftp inetd



Conclusions

• Our lives as system administrators are full of 
interdependent minutiae

• Behavioral thinking can determine which are 
important and induce a modularity of effect

• Agents can manage modules and shield us from 
dealing with non-behavioral parameters

• Result is increased consistency, lower bug 
exposure, and lower administrative cost.



Lessons Learned

• We seek the rosetta stone that will link 
system administration to the rest of 
computer science and engineering, as well 
as mathematical knowledge

• Subtleties of our goals and practices 
cause surprising and subtle results

• Cannot simply apply known theorems; 
must repeat their proofs and see if they 
still work!



Current Status

• Software still prototype
• New theory: 

– Can split validation into two phases: 
1. Avoid effects of latent variables
2. Validate outcome

– Avoidance of latent problems is statically 
verifiable in configuration scripts



Acknowledgements

• Lssconf working group
• Configuration Management and Infrastructure 

workshops and BOFs
• CFengine (happy 10th birthday!) 
• Network Appliance Corp



Contact

• Email: couch@cs.tufts.edu
• Speaker table: moved to 5:30 pm session 

(due to unavoidable conflicts) 

mailto:couch@cs.tufts.edu�

	Seeking Closure in an Open World: a Behavioral Agent Approach to Configuration Management
	Goals
	Pressures
	Closures and Conduits
	Closure is not new
	                       Creating a�Closure
	Kinds of Configuration Parameters
	Example: web server
	SA and SQA
	Minimizing Achievable State
	Constraints and Expense
	(Intelligent?) Agents
	Cost and Value
	Theory and Practice
	Theory: Preliminary Results
	Theory: Some Subtleties
	Foolproof Composition
	Practice: Preliminary Prototypes
	Incremental File Editing
	Declaring File Structure (once)
	Preliminary Editing Operations
	20-20 Hindsight: Ideal Editing
	Service Synthesis: FTP
	Conclusions
	Lessons Learned
	Current Status
	Acknowledgements
	Contact

