
Human-Understandable Inference of Causal
Relationships

(Invited Paper)

Alva L. Couch
Department of Computer Science

Tufts University
Medford, Massachusetts 02155

Email: couch@cs.tufts.edu

Mark Burgess
Department of Informatics
Oslo University College

Email: Mark.Burgess@iu.hio.no

Abstract—We present a method for aiding humans in under-
standing causal relationships between entities in complex systems
via a simplified calculus of facts and rules. Facts are human-
readable subject-verb-object statements about system entities,
interpreted as (entity-relationship-entity) triples. Rules construct
new facts via implication and “weak transitive” rules of the
form “If X r Y and Y s Z then X t Z”, where X, Y, and Z
are entities and r, s, and t are relationships. Constraining facts
and rules in this way allows one to treat abductive inference
as a graph computation, to quickly answer queries about the
most related entities to a chosen one, and to explain any derived
fact as a shortest chain of base facts that were used to infer it.
The resulting chain is easily understood by a human without
the details of how it was inferred. This form of simplified
reasoning has many applications in human understanding of
knowledge bases, including causality analysis, troubleshooting,
and documentation search, and can also be used to verify
knowledge bases by examining the consequences of recorded
facts.

I. INTRODUCTION

There are many situations in which causal information
about a complex system must be interpreted by a human
being to aid in some critical task. For example, the speed of
troubleshooting depends upon how quickly one can link ob-
served symptoms with potential causes. Likewise, in scanning
documentation, it is often useful to associate a behavioral goal
for a managed system with the subsystems involved in assuring
that goal, and associate each subsystem with documentation
on how to modify the subsystem toward that goal.

We present a simplified reasoning system for inferring
causal relationships between entities in a complex system,
including the use cases of linking symptoms with causes and
linking goals with documentation. Input to the method is a
set of facts that represent what is known about the world,
as well as a set of rules for inferring new facts. We assume
that predetermined facts are not complete and, at best, are an
approximate description of relationships in the world. Rules
that allow us to construct new facts are limited to two simple
forms in order to allow us to treat the inference algorithms
as graph computations. This limitation allows us to answer
simple queries efficiently, and explain each inference via a
linear chain of relationships that is easily understandable to a
human being.

A. Facts

Facts in our method are relationships between named enti-
ties, expressed as subject-verb-object triples of the form:

host01
:::::::::::::::
is an instance of file server

Entities such as host01 are underlined with straight lines while
relationships such as

::::::::::::::
is an instance of are underlined with

wavy lines. A set of facts represents an entity-relationship
model of the kind used commonly in Software Engineering,
as opposed to those utilized in database theory; the former
describe interactions and causal dependencies, while the latter
describe functional dependencies. Facts are positive statements
about causal relationships and cannot express a lack of re-
lationship. Negation of an existing fact is handled specially
below.

B. Relationships

Relationships in our method are chosen to aid in solv-
ing problems in a particular problem domain. In analyzing
causality,

:::::::::
influences and related concepts form the basis for

analysis, while in thinking about and analyzing document
spaces,

::::::::
describes and

::::::::::
documents are more relevant. In thinking

about scientific papers,
::::::::
explains would be a relevant verb.

The central relationship for a problem domain (e.g.,

:::::::::
influences) represents a concept that is related to other
concepts also expressed as relationships (e.g.,

:::::::::
determines,

::::::::::::
can influence,

::::::::::::::
partly influences). Interactions between rela-

tionships are coded as rules that might be more accurately
viewed as defining interactions between the concepts that
relationships represent.

A key feature of our method is that modalities (e.g., “can”,
“might”, etc) are part of the symbols and not part of the logic.
In systems that can perform “modal logic”, there are symbols
in the system for the concepts of “can”, “might”, etc., while
in our system these concepts are appended to each specific
token. This actually simplifies what might be very complex
computations otherwise, when we try to reason in the system.

C. Rules

Rules are used to construct derived facts from base facts
known to be true at the outset. However, all rules in our system



are stated in terms of relationships, and not individual facts.
Rules include implications, inverses, and weak transitive rules.

Implicative rules have the form “For every X and Y, if
X r Y then X s Y” where X and Y are entities and r and
s are relationships. In general, all variables in our rules are
universally quantified, so we leave out the quantifiers and treat
them as implicit. The implicative rule “For every X and Y, if
X requires Y then ‘X depends upon Y” is written as

〈
:::::::
requires →

::::::::::::
depends upon〉

Implicative rules distinguish between more specific relation-
ships (in the antecedent) and more general relationships (in the
consequent);

:::::::
requires is a more specific connection between

two entities than the more “generic”
::::::::::::
depends upon. Invoking

an implicative rule thus raises the level of abstraction in
describing a relationship.

D. Inverses

While a fact “X r Y” is typically directional in the sense
that X and Y cannot be interchanged, every fact “X r Y” has a
corresponding fact “Y s X” where X and Y appear in reverse
order. Such relationships r and s are called inverses to one
another. The relationship between inverses is defined (by the
user) through rules, rather than being inferred (through logic).
E.g., the fact

host01
:::::::::::::::
is an instance of file server

is equivalent with the fact

file server
:::::::::::
has instance host01

Their equivalence is notated via the rule

〈
:::::::::::::::
is an instance of ./

:::::::::::
has instance〉

An inverse rule is just a special kind of implication; the above
rule means that “for every A and B, if A

:::::::::::::::
is an instance of

B, then B
:::::::::::
has instance A, and vice-versa. We also write

that inv(
:::::::::::
has instance) is

:::::::::::::::
is an instance of and vice versa,

Some facts are self-inverse, e.g., if “X
::::::::::
is a peer of Y”, then

“Y
:::::::::::
is a peer of X”.

E. Weak transitive rules

Weak transitive rules have the form “for every X, Y, and Z,
if X r Y and Y s Z then X t Z,” where X, Y, Z are entities
and r, s, t are relationships. The (strong) transitive rule “if X
requires Y and Y requires Z, then X requires Z” is written as

〈
:::::::
requires,

:::::::
requires,

:::::::
requires〉

while the rule “if X has part Y and Y controls Z then X
controls Z” is written as

〈
:::::::
has part,

:::::::
controls,

:::::::
controls〉

The latter is called a weak transitive rule because the conse-
quent

:::::::
controls does not match at least one of the antecedents

(
:::::::
has part). Weak transitive rules are the key to turning a

logic computation into a graph computation when computing
queries about facts.

F. Kinds of queries

The inference method supports two kinds of queries, both
based upon a concept of inference distance between entities in
the fact base. The inference distance between two entities X
and Y with respect to a relationship r is the minimum number
of weak transitive rules that must be applied to base facts to
infer the fact “X r Y”. For reasons that will become clear by
example, implication rules and inverses are not used in our
measure of distance.

The first kind of query is to locate the entities Y related to
a given entity (or set of entities) X via some predetermined
relationship r, i.e., to solve the query “X r Y?” where X and
r are known and Y? is unknown. For each appropriate Y, the
minimum number of weak transitive rules applied to infer
“X r Y” from base facts is used as a measure of distance
between X and Y as subsystems, so that potential candidates
Y can be listed in order from “near to” to “far away from” X.

The second kind of query is to create a human-readable
explanation of the shortest derivation of a given derived fact
“X r Y” in terms of recorded facts and weak transitive rules
applied in order to derive it. This derivation takes the form of
a sequence of entities and relationships, for which X and Y
are endpoints.

Many other queries are possible, but for the purposes of
this paper, these two kinds are exemplary of the benefits of
the method.

II. TWO USE CASES

Two use cases motivate our choices above. In troubleshoot-
ing, one of the central problems is to relate symptoms to
causes, where it is possible that causes are several entities
distant from symptoms. In scanning documentation, one of the
central problems is to relate one’s personal goal to relevant
documents describing how to accomplish the goal. Both of
these are causal inference problems that can be addressed
through the proposed inference method.

A. Troubleshooting

Suppose we have a very simple network with a fileserver
host01, a dns server host02, and a client host03. We might
code the relationships between these hosts as a set of abstract
“sentences”, like

host01
:::::::::::::::
is an instance of file server

file server
:::::::
provides file service

host02
:::::::::::::::
is an instance of dns server

dns server
:::::::
provides dns service

host03
:::::::::::::::
is an instance of client workstation

client workstation
:::::::
requires file service

client workstation
:::::::
requires dns service



In this case, rules include

〈
:::::::::::::::
is an instance of ./

:::::::::::
has instance〉

〈
:::::::
provides ./

:::::::::::::
is provided by〉

〈
:::::::
requires ./

::::::::::::
is required by〉

〈
::::::::::::
depends upon ./

:::::::::::::::::::
is depended upon by〉

〈
:::::::
requires,

:::::::
requires,

:::::::
requires〉

〈
:::::::
provides,

:::::::
provides,

:::::::
provides〉

〈
:::::::
provides →

:::::::::::::::::::
is depended upon by〉

〈
:::::::
requires →

::::::::::::
depends upon〉

Suppose that host03 has a problem. A query of the entities
that host03 depends upon returns

host03
::::::::::::
depends upon host01

host03
::::::::::::
depends upon host02

but this information is not enough to be useful to a human;
we must consider the explanation of the dependence. One
explanation of the dependence between host01 and host03 is

entity relationship entity
host03

:::::::::::::::
is an instance of client workstation

client workstation
:::::::
requires file service

file service
:::::::::::::
is provided by file server

file server
:::::::::::
has instance host01

We call such an explanation a story of the dependence between
two entities, and often leave out the repeated entity, as in

entity relationship
host03

:::::::::::::::
is an instance of

client workstation
:::::::
requires

file service
:::::::::::::
is provided by

file server
:::::::::::
has instance

host01

Some stories are easy to compute, and others require
more subtle techniques. Architectural descriptions are often
incomplete and specified at different levels of abstraction. To
cope with this, our method utilizes implication to “lift” facts to
a common level of abstraction at which reasoning can occur,
and then “re-grounds” that reasoning by expressing high-level
(abstract) inferred facts in terms of the low-level (concrete)
facts that were their basis.

Consider, e.g., the following quandary:

host02
:::::::::::::::::::::
is authoritative for zone eecs.tufts.edu

host03
::::::::::::
is inside zone eecs.tufts.edu

What is the real relationship or dependency between host02
and host03? To answer this question, we must proceed to a
higher level of abstraction, via implication:

〈
:::::::::::::::::::::
is authoritative for zone →

:::::::::
influences〉

〈
::::::::::::
is inside zone →

::::::::::::::
is influenced by〉

and define appropriate inverses:

〈
:::::::::
influences ./

::::::::::::::
is influenced by〉

〈
:::::::::::::::::::::
is authoritative for zone ./

::::::::::::::::
has zone authority〉

〈
::::::::::::
is inside zone ./

::::::::::::::::::::
contains zone member〉

after which the facts available also include:

host02
:::::::::
influences eecs.tufts.edu

host03
::::::::::::::
is influenced by eecs.tufts.edu

We invert the latter to its inverse:

eecs.tufts.edu
:::::::::
influences host03

so that by the obvious transitive rule:

〈
:::::::::
influences,

:::::::::
influences,

:::::::::
influences〉

we infer the story that:

entity relationship
host02

:::::::::
influences

eecs.tufts.edu
:::::::::
influences

host03

but this is not good enough for human consumption. The
relationships

:::::::::
influences in the above are the result of two

implications:

〈
:::::::::::::::::::::
is authoritative for zone →

:::::::::
influences〉

〈
::::::::::::::::::::
contains zone member →

:::::::::
influences〉

To complete the picture, we “ground” the lifted relationships
by replacing them with the concrete relationships that imply
them, e.g.,

entity relationship
host02

:::::::::::::::::::::
is authoritative for zone

eecs.tufts.edu
::::::::::::::::::::
contains zone member

host03

and this grounded explanation “explains” the abstract reason-
ing in concrete (and useful) terms.

In this example, implication is used to vary the level of
abstraction used in reasoning, and is not a component of the
reasoning itself. This is part of the reason for why it is not
counted as an inference step in computing which explanations
are most succinct.

B. Document browsing

A second problem that can be solved via this form of reason-
ing is to locate documents relevant to a task in document space.
Locating documents is the purpose for which the method was
originally designed. In this case, the verb

::::::::
describes replaces

the verb
:::::::::
influences as the central relationship of interest.

Suppose we want to understand how to set up a service
switch in a network. We might start with the facts:

service switch
:::::::
requires service URL

service
:::::::::::
has attribute service URL

service URL
:::::::::::::::
is an instance of URL

URL
:::::::::::
described by wikipedia for URL

user service
:::::::::::::::
is an instance of service

user service
:::::::::::
described by user service manual



(and many others). Rules include:

〈
::::::::::::::
is described by ./

::::::::
describes〉

〈
:::::::::::::::::::
is partly described by ./

::::::::::::::
partly describes〉

〈
:::::::::::
has attribute ./

:::::::::::::::
is an attribute of〉

〈
:::::::::::
has instance ./

:::::::::::::::
is an instance of〉

〈
::::::::
describes →

::::::::::::::
partly describes〉

〈
::::::::
describes,

:::::::::::
has attribute,

::::::::
describes〉

〈
:::::::::::
has attribute,

:::::::::::
described by,

:::::::::::::::::
partly described by〉

〈
::::::::
describes,

:::::::::::
has instance,

::::::::
describes〉

〈
::::::::
describes,

:::::::::::::::
is an instance of,

::::::::::::::
partly describes〉

In this case, we do not care about causal relationships as much
as relevant documentation. If we query our reasoning system
for X such that “user service

:::::::::::::::::::
is partly described by X”, we

obtain, among other responses:

user service
::::::::::::::
is described by user service manual

user service
:::::::::::::::::::
is partly described by wikipedia for URL

etc. An explanation of the latter fact is:

entity relationship
user service

::::::::::::
is instance of

service
:::::::
requires

service URL
:::::::::::::::
is an instance of

URL
::::::::::::::
is described by

wikipedia for URL

which demonstrates exactly how the Wikipedia documenta-
tion is relevant. Note that we asked for

::::::::::::::
partly describes and

actually received feedback on facts for the more specific
relationship

::::::::::::::
is described by; this is a result of the lifting and

grounding technique discussed in the previous section.
Note the carefully crafted rules in the preceding example;

if something is an instance of something else, and something
describes the instance, it might not describe the whole scheme
of things. If we describe the whole scheme, we do describe
the instance. Also, describing an attribute of a thing does not
describe the whole thing, but describing a thing does describe
its attributes. These rules might be considered as part of the
definition of the

::::::::
describes relationship, via its interaction with

:::::::::::::::
is an instance of and

:::::::::::::::
is an attribute of.

III. IMPLEMENTATION

The examples above assume the existence of both a knowl-
edge base and a set of rules with specific properties. These
properties lead both to the kinds of inferences that can be done,
as well as the speed with which they can be accomplished.

A. Specifying facts

Facts in our knowledge base represent invariant properties of
entities. Variation over time is not supported. Thus not every
kind of fact can be represented. Kinds of facts that can be
represented are mostly “architectural” in nature, in the sense
that they do not vary for the lifetime of the entity.

Facts cannot express contradictions. Even if two classes A
and B of entities are mutually exclusive, there is no way to
express that in a fact. Mutual exclusivity is instead a result

of reasoning, in the sense that if an object is an instance of
A, then it enjoys all properties of an instance of A, while if
it is not an instance of A, properties of A are not assumed
to be either present or absent. Thus, in constructing a base of
facts, it is important to eliminate seeming contradictions from
the fact base, because contradictions cannot be detected by the
reasoning method.

In a fact, entities and relationships are formal symbols
devoid of meaning. The statement host01

:::::::::::::::
is an instance of

file server is a sequence of three tokens, as opposed to the
English sentence “host01 is an instance of file server.” The
meaning of an entity token (as a mapping between the token
and the real world) is implicit in the set of facts that describe
the entity, just as the meaning of a relationship token is
implicit in the rules that describe how it interacts with other
relationships.

B. Retracting a fact

In our information store, facts cannot be deleted. They can,
however, become outmoded, in the sense that they describe old
information that is no longer of interest. Suppose for example
that we record a fact about the authors, e.g.,

alva
:::
eats cornflakes

and then it turns out that this is inaccurate. There is no way to
retract that fact, but in fact, our new information describes a
“different alva” than before. So instead, we issue a new token
alva’ with no facts listed, and then duplicate all of the facts
from alva to alva’ except the fact to be deleted. Then we can
incorporate new facts about alva’ that do not apply to the old
alva, e.g.,

alva’
:::
eats oatmeal

and computation proceeds as defined below. Thus we delete
facts by re-versioning the entities that they describe. This can
be done automatically through a machine-learning importance
ranking, such as used by Cfengine [1].

C. Constructing rules

Constructing a rule requires more than considering how it
acts on facts. At a superficial level, derived facts are computed
from base facts by repeated use of rules. The rules themselves,
however, can be combined to form new rules. There are several
finer points of describing rules, including describing modal
relationships and partial knowledge.

1) Modal and partial knowledge: There is no special
mechanism for separately handling modal constructions such
as

::::::::::::::
might determine and

::::::::::::
can influence in our method. Instead,

these are defined via their interactions with other tokens. The
qualifiers “can” and “might”, in a relationship, are weaker than
the unqualified relationship; “can” indicates capability while
“might” indicates possibility (this assumes a standard partial
ordering of the terms in the ontology). Thus we write:

〈
::::::::::
determines →

:::::::::::::
can determine〉

〈
:::::::::::::
can determine →

:::::::::::::::
might determine〉



from which we can immediately derive by transitivity of
implication that:

〈
::::::::::
determines →

:::::::::::::::
might determine〉

Likewise, one can distinguish between complete and partial
determination via:

〈
::::::::::
determines →

:::::::::::::::
partly determines〉

Influence is another way to describe partial determination:

〈
::::::::::
determines →

:::::::::
influences〉

The relationship between
:::::::::
influences and

:::::::::::::
can determine can be

obtained from:

〈
::::::::::
determines →

:::::::::::::
can determine〉

〈
:::::::::::::
can determine →

::::::::::::
can influence〉

In general, however, two abstract concepts may not enjoy any
relationship whatever.

The above describe only one facet of the meaning of

:::::::::
influences. Several more facets include:

〈
::::::::::
is a part of,

::::::::::
determines,

::::::::::
determines〉

〈
::::::::::
determines,

::::::::::
is a part of,

:::::::::
influences〉

〈
:::::::::::::::
is an instance of,

::::::::::
determines,

::::::::::
determines〉

〈
::::::::::
determines,

:::::::::::::::
is an instance of,

:::::::::
influences〉

In other words, if a thing is part of a determined thing,
the part is likewise determined, but determining a part of a
thing only influences the thing. Likewise, if a set (class) of
things is determined, so are its members, but determining a
member does not determine the set of which it is a member.
These rules might be considered facets of a “definition” of the
(more abstract) relationship

:::::::::
influences, in terms of the (more

concrete) relationship
::::::::::
determines.

D. Deleting a rule

As for facts, there is no well-defined notion of deleting
a rule. However, one can proceed exactly as one does for
deleting facts, by creating a new version of the consequent
relationship of the rule to invalidate current inferences via the
rule. E.g., if one specifies:

〈
::::::::::
is a part of,

:::::::::::::::
is an instance of,

::::::::::
is a part of〉

(in error), the solution is to create a new version of the conse-
quent

:::::::::::
is a part of’, instantiate all rules for the new relationship

except the one to be deleted, and then resume computation of
the consequences of the new rules. Eventually, the original

::::::::::
is a part of can be removed, when the consequences of the
new

::::::::::
is a part of’ are known and the original relationship is

no longer needed.

E. Inferring new rules
So far, we have emphasized deriving new facts from base

facts and base rules, but there is an equivalent calculus for
deriving rules from other rules. Each relationship r can be
viewed as representing the set of ordered pairs (X, Y ) where
“X r Y ” is either a base fact about the world or can be
inferred. For example, the relationship

:::::::::
is a part of can be

thought of as representing the set

::::::::::
is a part of ≡ {(X, Y ) | X

::::::::::
is a part of Y } (1)

Likewise, each rule is a statement about sets represented by
relationships. Implication is a subset relationship:

〈r → s〉 ≡ r ⊂ s (2)

i.e., the set of facts r is a subset of the set of facts s. In like
manner, a weak transitive rule is also a subset relationship of
a different kind:

〈r, s, t〉 ≡ r ⊗ s ⊂ t (3)

i.e., t is a superset of the product r ⊗ s resulting from
combining sets r and s , where r ⊗ s is defined by

r ⊗ s ≡ {(X, Z) | (X, Y ) ∈ r, (Y, Z) ∈ s} (4)

Note that every rule is inclusive of other kinds of meaning,
and that one never limits set contents with a rule.

Creating rules from others is most easily explained by
treating relationships as sets. The obvious relationship between
sets:

r ⊂ s and s ⊂ t ⇒ r ⊂ t (5)

can be trivially restated as a relationship between rules:

〈r → s〉 and 〈s → t〉 ⇒ 〈r → t〉 (6)

in the sense that there is no problem with instantiating a new
rule 〈r → t〉 and using it instead of the other two.

The subset relationships for weak transitivity are described
in the following diagram:

r′ s′

∩ ∩
r ⊗ s ⊂ t ⇒ r′ ⊗ s′ ⊂ t′

∩
t′

(7)

(where ∩ indicates vertical subsetting). In the diagram, r′ → r
(as relationships) or equivalently r′ ⊂ r (as sets), s′ → s (as
relationships) or equivalently s′ ⊂ s (as sets), and t → t′

(as relationships) or equivalently t ⊂ t′ (as sets). Because
the subset relationship is transitive, for any rule 〈r, s, t〉 and
any appropriate r′, s′, and t′, the rule 〈r′, s′, t′〉 also applies
by set containment. We might more concisely represent this
set of relationships by substituting rules for products and
implications for subsets, e.g.,

r′ s′

↓ ↓
〈 r, s, t 〉 ⇒ 〈 r′, s′, t′ 〉

↓
t′

(8)



�

-
C
C
C
C
CCO

s,3,...

r,2,...

Z

YX

t,6,r,Y,s

Fig. 1. Recording results of a best known inference of “X t Z” from “X r Y”,
“Y s Z”, and 〈r,s,t〉. Input edges “X r Y” and “Y s Z” are marked with the
number of inferences (2 and 3) needed to create them. The edge “X t Z” is
labeled with the least inference distance + 1 and information about how to
achieve that least distance (r,Y,s).

Finally, there are obvious rules for handling inverses.

〈r, s, t〉 ⇒ 〈inv(s), inv(r), inv(t)〉 (9)

and
〈r → s〉 ⇒ 〈inv(r) → inv(s)〉 (10)

These “meta-rules” can be used to compute unknown rules
from known ones. More important, they account for all possi-
ble uses of implication and inverses in subsequent applications
of weak transitive rules.

The key to everything that follows is that applying rules
only adds facts, so that if one simply tries all rules until no
new facts are added, one has all of the current available facts.
One naive way to accomplish this is:

repeat
for all 〈r → s〉 do

Set s = s ∪ r.
end for
for all 〈r, s, t〉 do

Set t = t ∪ r ⊗ s.
end for

until there is no change in any relationship set.
In doing this, we keep track of which relationships are ground
and which are derived, which allows us to construct a “shortest
path” between two given entities as a chain of relationships.

F. Computing queries

Queries are computed efficiently by relying upon math-
ematical properties of our choice of facts and rules. By
construction, any derived fact or rule cannot be invalidated
over time and may safely be cached for later use. Adding a
new fact does not require recomputation of existing cached
facts. Changing a fact is a matter of creating a new version of
its subject and/or object. Changing a rule is a matter of creating
a new version of its consequent relationship. No backtracking
is necessary to compute new facts.

The steps in satisfying a query ““X r Y?”” are as follows.
Let E be the set of entities described by facts, and let F
represent the a priori facts we have about entities in E . Note
that facts F are edges in a graph G = (E ,F) where E is the
set of entities that facts describe. Let R represent our a priori

rules. These can be separated into weak transitive rules W and
implicative and inverse rules I, where R = W ∪ I.

First we utilize all implication and inverse rules in I to gen-
erate the derived facts and rules that result from implication:

1) Apply all implications and inverse rules in I to all facts
F to create a complete list of implied facts F ′.

2) Use implication and inverse rules in I to generate a
complete set of weak transitive rules W ′ from W , by
using equations 6, 8, 9, and 10.

These two steps account for all implication and inverse rules
in I, both for facts and rules. Thus we need not account for
these in further computations. This step results in what might
be called “weaker rules” than the originals, e.g., combining
the rules:

〈
:::::::
requires,

:::::::
requires,

:::::::
requires〉

〈
:::::::
requires →

:::::::::::
may require〉

results in the derived rule:

〈
:::::::
requires,

:::::::
requires,

:::::::::::
may require〉

that is “weaker” than the original.
Our algorithm is based upon the observation that “X r Y”

is a consequence of facts F and rules R if and only if it is
a consequence of facts F ′ and rules W ′. Thus the problem is
no longer an inference problem, but rather, a graph problem
as to whether “X r Y” is in the transitive closure G′′ of the
derived labeled graph G′ = (E ,F ′) with respect to the weak
transitive laws in W ′.

To compute G′′, let dist(“X r Y”) represent the current
minimum known inference distance between base facts and
the fact “X r Y”, or infinity if there is no a priori relationship
between X and Y. We will compute G′′ by a simple variation
of the transitive closure algorithm, to wit:

Set G′′ = G′.
for all existing edges “X r Y” ∈ F ′ do

Set dist(“X r Y”)=0.
end for
while some edges are updated or added to F ′′ do

for all facts “X r Y” and “Y s Z” in F ′′ do
if there is a rule 〈r,s,t〉 then

if “X t Z” 6∈ F ′′ then
Put “X t Z” into F ′′.
Label dist(“X t Z”)

=dist(“X r Y”) + dist(“Y r Z”) + 1.
else if dist(“X t Z”)

> dist(“X r Y”) + dist(“Y r Z”) + 1 then
Label dist(“X t Z”)

=dist(“X r Y”) + dist(“Y r Z”) + 1.
end if

end if
end for

end while
The result of this process is a graph G′′ = (E ,F ′′) in which
X is connected to every candidate Y that has a relationship
with it, and every edge between X and Y is labeled with the
minimum number of rule applications needed to infer the edge.



From this computation, one can list the connected entities in
order of inference distance from X.

The general pattern of computation can be summarized as
follows:

F W
↓ I ↓ I
F ′ W′

−−→ F ′′

where arrows represent (implicative and weak transitive) clo-
sure computations and, at the end of this, “X r Y” ∈ F ′′.

G. Improving runtime

The above “brute force” algorithm captures the idea of the
algorithm succinctly, but there are many simple optimizations
that improve its runtime. First, it is always safe to cache prior
computations of derived rules and facts, and use them later.
All that is necessary is to incorporate the effects of new rules
into the cache.

Second, one can safely restrict the domain of the computa-
tion to include only relationships of interest or that result in
relationships of interest. One need not consider, e.g.,

::::::::
describes,

when one is interested only in
::::::::::
determines, because there is no

relationship between documentation and causality.
Third, one can limit inference to facts that involve X and

Y . One can proceed breadth-first from the facts involving X ,
to include facts that connect that set with others. This reduces
the iteration above from “for all facts “X r Y” and “Y r Z” in
F ′′, to “for all facts “X r Y” previously derived about X and
all related facts “Y r Z” in F ′′, which converts iteration over
all facts to a breadth-first traversal similar to that in Dijkstra’s
“single-destination shortest path” algorithm [2].

H. Inferring stories

To compute the sequence of inferences that connect two
entities A and B, we repeat the computation above, but this
time, record the midpoint entity and relationships used to
create each minimum-distance edge, on the edge. E.g., in
Figure 1, as a result of applying 〈r,s,t〉 to “X r Y” and “Y s Z”,
we get “X t Z” labeled with both the number of rules required
(6 = 1+2+3) and the prior inference details “r Y s” that resulted
in that inference count.

To produce an explanation of “X t Z”, we use the result
of the transitive closure calculation to proceed in reverse,
replacing each edge with the antecedent of the weak transitive
inference that produced the edge. First we replace “X t Z” with
“X r Y s Z”, where we applied 〈r,s,t〉 to “X r Y” and “Y s Z”
to produce “X t Z” via the minimum number of rules. We
continue to replace one adjacent pair with a triple at a time,
until all that remains is a sequence of base facts, all labeled
with distance 0.

The result of this sequence of substitutions is a derivation
tree for the relationship “X t Z”. The leaves of the derivation
tree are the entities on the path between X and Z, while the
relationships in the tree describe the relationships between
leaves.

Finally, for each of the leaf facts, referring to the implicative
rules I, we choose the base fact that is most specific and

implies it, thus “grounding” the sequence in low-level terms.
This gives the outputs discussed in the use cases above.

IV. RELATED WORK

This work arose over time from ideas on utilizing logic
programming in system administration [3], but approaches the
problem of applying logic to system administration from a new
angle based upon ideas in topic maps [4], [5]. We initially
intended to solve problems in navigating in a specific topic
map – Copernicus [6], [7] – that documents and tracks use
of the Cfengine suite of autonomic management tools [8]–
[11]. We realized that our method for navigating Copernicus
has application to troubleshooting, by giving human operators
more detailed causal information than is available by other
methods.

Surprisingly, this work did not arise out of any tradi-
tion of formal reasoning or knowledge representation, but
instead, from traditions of library science, graph algorithms,
autonomic system management, computer immunology, and
troubleshooting. We asked ourselves which graph algorithms
would provide meaningful connections between objects in a
topic map, and the answer was a form of abductive reasoning.
Our method represents a limited form of abduction, via a
limited information model, where our simplifications avoid
computational quandaries and make our specific problem of
reporting causal chains easy to solve.

A. Topic maps

Our entities and relationships bear strong resemblance to
“topics” and “associations” between topics in a topic map [4],
[5]. A topic map is a kind of generalized entity-relationship
(ER) model utilized in library science:

1) Topics (entities) are analogous to entries in an index of
a book.

2) Associations (relationships) are analogous to “See also”
in a book index.

3) Occurrences are analogous to page numbers in an index,
and specify “where” a topic is mentioned.

The most important thing we draw from topic maps is the
limitation to positive relationships, and the lack of negatives.
Our ER-diagrams, like topic maps, are intended to define
entities through their relationships with other entities. Our facts
and rules have “definition-like” qualities. Notably:

1) Entities are static and do not change over time (from the
point of view of the reasoning method, inside the formal
model).

2) Relationships are static and do not change over time.
3) Rules are additive and define facets of the definition of

a relationship.
Topic map associations are slightly more expressive than our

relationships; unlike our triples, an association is a quintuple

topic1role1:::::::::
assocnamerole2topic2

where role1 serves to disambiguate the scope of the name
topic1 while role2 serves to disambiguate the scope of the



name topic2. The scope of a name is the context in which it
has meaning. E.g., “Charlie” could be a host name, or a pet’s
name, or even a software package. The scope of “Charlie”
determines the one of these to which it refers. E.g., our fact

host01
:::::::::::::::
is an instance of file server

might be written in a topic map as

host01hostname:::::::::::::::
is an instance ofhost typefile server

Its inverse association would be

file serverhost type:::::::::::::::
is an instance ofhostnamehost01

because roles disambiguate direction and allow, e.g., use of
languages that read right-to-left as topics, associations, and
roles. The association itself is viewed as a triple

hostname:::::::::
assocnamehost type

Our reasoning methods are easily adapted to handle roles, but
we left that adaptation out of this paper for simplicity.

In using topic maps to index Copernicus, we found that a
particular way of thinking about the map led to more efficient
use of documentation. If we view the map as a set of links
between topics, it is easy to get lost in the map, while if
we view it as a set of chains of reasoning, the relationships
become more clear and the map becomes more useful. This
led to our algorithms for computing chains, which serve as
“explanations” of relationships between topics.

B. Cfengine

We were also inspired by the philosophy of the configura-
tion management suite Cfengine that Cfknowledge documents.
Cfengine distributes complex problems of configuration man-
agement among cooperating autonomous agents. Cooperation
between agents is based upon promises that in their simplest
form are assertions of behavior presented by one agent to
another. An agent’s promise – e.g., the promise to provide a
particular kind of service – maps to a base fact in our method.
This allows one to link the configuration of Cfengine (a set of
promises) with the documentation for Cfengine (a set of other
facts and relationships that explain the former).

C. Troubleshooting

There are many other approaches to troubleshooting. Snitch
[12] applies a maximum-entropy approach to creating dynamic
decision trees for troubleshooting support, using a proba-
bilistic model. The Maelstrom approach [13] exploits self-
organization in troubleshooting procedures to allow use of
less effective procedure. STRIDER [14] employs a state-based
approach and knowledge of behavior of peer stations to infer
possible trouble points. Outside the system administration do-
main, SASCO [15] guides troubleshooting by heuristics, using
what it calls a “greedy approach” to pick most likely paths to
a solution. Troubleshooting has an intimate relationship with
cost of operations [16], which justifies use of decision trees
and other probabilistic tools to minimize cost and maximize
value.

There are several differences between our work and the
above approaches to troubleshooting. We base our trou-
bleshooting upon a partial description of the architecture of
the system under test; it is partial because any sufficiently
detailed description of architecture lacks some details, and
details change over time so that no snapshot of architecture
can be completely accurate. . We use architectural reasoning
to infer the nature of dependencies in the system, and utilize
those inferences to guide troubleshooting. The net result is that
we show how to apply something we already need to have –
a global map of architecture – to the troubleshooting process.

D. Abduction

The problem of determining a set of rules to apply to
achieve a desired relationship is a simple form of logic-based
abduction [17]–[19], i.e., deriving an “explanation” from a
logical description of a problem and an observed symptom.
Unlike prior work, we limit the problem structure to gain
substantive performance advantages. The general abduction
problem is to support some conclusion C from a base of facts
B, via logical reasoning. In our case, C is a single fact “X r Y”,
while B is limited to the facts and rules as specified above.
The output of our abduction calculation is limited to linear
chains of reasoning that a human can interpret quickly. Thus
we do not solve a general abduction problem, but rather, a very
specific one, constructed so that only deduction from known
facts is required.

E. Information Modeling

Our facts and rules are a (very limited) form of informa-
tion modeling as proposed by Parsons [20]. Whereas early
information modeling tried to express models by classifying
objects in a form of object-oriented modeling, this mechanism
quickly proved vulnerable to a problem Parsons calls the
“tyranny of classification” [21] in which an instance must be a
member of some class. Parsons proposes a separation of data
into instances and separate classes, which mimics our design
closely. The main difference between our data model and
Parsons’ is that it intentionally does not model certain kinds of
relationships, e.g., ternary relationships such as“foo(X,Y,Z)”.

Our approach is quite different from information modeling
regimens such as the Shared Information and Data model(SID)
[22], mostly due to lack of structure (or even the need for
structure) in our approach. While SID gains its strength from
stratifying knowledge into domains, our approach invokes
stratification by simple mechanisms such as the relationship

:::::::::::::::
is an instance of. There is no overall required hierarchical
structure to our data, and any hierarchical relationships emerge
from defined facts and rules (and potentially topic map roles).

Our approach is also quite distinct from prior approaches
to “causal modeling,” e.g., “revealed causal modeling” [23],
[24], because we rely upon user knowledge of the details of
causality, and do not try to infer it second-hand. Our model
of causality is based upon coding simple English statements,
rather than inferring probabilities of relationship between
entities.



F. Ontology

Our relationship to ontological mapping is to propose a
new problem. Like all other approaches to information rep-
resentation, our approach requires ontological mapping to
link concepts arising from different information domains. For
example, the concept of a

::::::::::
determines relationship may differ

depending upon who is using it. However, ontological mapping
in our system – like reasoning – is made simpler by the
limitations we impose upon our logic. The rules that govern
a relationship in our representation constitute – in some sense
– its “meaning”, and a set of relationships that satisfy the
same rules may safely be considered as equivalent. Thus the
ontological mapping problem is – for us – a matter of matching
relationships across information domains in such a manner
that the same rules apply to either side of a mapping. This is
– again – a much simpler problem than general ontological
mapping as embodied, e.g., in DEN-NG [25].

V. THEORETICAL CONCERNS

The proposed method solves some common problems but
raises some deeper questions about the use of knowledge in
systems management. The main cost of using the method is
that its input knowledge must be carefully structured into a
usable form, which often requires substantive transformation
from its original form. During this transformation, some
meaning is lost. The method is very sensitive to the choice
of facts and rules to represent ideas, and one invalid rule or
fact can render the output useless.

A. Ambiguity and uncertainty

Some statements one can make about architecture are cer-
tain, and others portray only partial information. In formal
reasoning, certain kinds of uncertainty are “good”, in the sense
that they enable reasoning, while other kinds are “bad”, in the
sense that they impede reasoning. Acknowledging uncertainty
in knowledge of architecture enables reasoning, while uncer-
tainty in interpreting facts impedes reasoning.

Ambiguity based upon lack of assumptions is “good”, in the
sense that the reasoning method functions best when as little as
possible is assumed. For example, if one is not absolutely sure
about the nature of a dependence between entities, one uses the
generic

::::::::::::
depends upon relationship to assert that there is some

unspecified dependence. Likewise, if one is not absolutely sure
that there is a dependence between two entities, one should
code that relationship as

:::::::::::::::::
might depend upon to remember that

the dependence is not known to be a certainty. In both of these
examples, we encode uncertainty in a set of facts as a generic
relationship.

Another kind of ambiguity impedes reasoning, by making
the user uncertain as to how to interpret a relationship. For
example, the relationship

:::
is a is ambiguous about the domain

in which similarity is invoked. Depending upon how one
speaks in English, “X

:::
is a Y” could mean that X is an instance

of class Y, is similar to an instance Y, or even that X is a variant

of an instance Y. Thus in coding facts, we avoid contextually-
defined verbs such as

::::
is a in favor of the disambiguated forms

:::::::::::::::
is an instance of,

::::::::::
is a type of, and

::::::::::
is a peer of.

B. Why we did not use logic programming
We implemented a prototype reasoning system entirely in

the Perl programming language. The literate Prolog program-
mer may realize that our rules and facts fit very well into the
logic programming language Prolog. E.g., if we code facts
like:

fact(host01, instance_of, file_server).

and implication rules like:

fact(X,influences,Y)
:-fact(X,determines,Y).

and transitive rules like:

fact(X,influences,Z)
:-fact(X,influences,Y),

fact(Y,influences,Z).

then the entire reasoning method is very easily coded in Prolog
with one clause per fact and one clause per rule.

The reason we did not do this is that our rules are much
simpler than Prolog supports, with the result that our Perl
prototype executes a few orders of magnitude faster than an
equivalent Prolog program. It was rather important to us to
have the program function quickly, and direct access to data
structures was useful in speeding up the search process. Unlike
general, unconstrained logic programs, our careful choice of
facts and rules allows us to eliminate backward chaining
completely, which means we do not need Prolog at all.

VI. LIMITATIONS

The reasoning method remains extremely simple and several
obvious quandaries remain in the work.

First, the desire to express reasoning as stories does not just
simplify computation, but also limits the kind of reasoning that
can be done. It is not clear exactly where the limits lie, though
we know that there are some facts that cannot be inferred or
even represented.

The simplest shortcoming arises when we try to use
Burgess’ promises [26], [27] as a description of architecture,
which is part of what promises are intended to describe. A
promise is a ternary relationship between three entities: a
promiser, a promisee, and a promise body (or description). Our
rules only act on binary relationships, so that so far, the full
concept of a promise cannot be implemented or reasoned about
in the current method. In particular, the relationship between
promises and bindings might be described in Prolog as:

bound_to(Agent2,Agent1)
:- promise(Agent1,Service,Agent2),

uses(IsClient,Service),
promise(Agent2,IsClient,Agent1).

where capitalized phrases represent variables while lowercase
phrases are atoms (strings). This means that Agent2 is bound



to Agent1 if Agent1 promises a service and Agent2
promises to use that service. To our knowledge, this rule
cannot be coded in our method, though bindings can be coded
explicitly.

One potential solution to this kind of quandary is to invoke
topic map roles to disambiguate roles in ternary facts, and to
express these relationships in the manner of chemical bonds,
e.g.,

file server desktop workstation
as promiser ↘ ↙ as promisee

::::::::
promises

↑ as promise body
file service

to mean that a file server (in the role of promiser)

::::::::
promises file service (in the role of a promise body) to
a desktop workstation (in the role of promisee). This has
potential to encode more kinds of relationships, at the expense
of depicting the results of inference as a two-dimensional
graph rather than as a linear chain of reasoning.

VII. CONCLUSIONS

In starting this work, we suffered from all of the precon-
ceptions of regular computer algebra and knowledge repre-
sentation: that computers can solve the worlds’ problems and
that it does not matter whether a human understands what
the computer is doing or not. We learned that if reasoning is
limited to the kind that is easily human-understandable, then
it has more value and reasoning actually becomes simpler to
implement. Knowledge domains that might have once been
irrelevant to a task become relevant. Notions such as inference
distance become a meaningful measure of the strength of
relationships between entities, and one can express a very
complex sequence of the proper kind of inferences in a very
readable form.

Our method of reasoning is not “the solution” to trou-
bleshooting or to documentation search, but rather, utilizes
a part of available information that was previously ignored.
It is not a replacement for current strategies, but rather, a
synergistic addition to the toolbox of the system administrator,
in the grand challenge of making the job more doable by
integrating all available knowledge about each problem.

ACKNOWLEDGMENT

The authors would like to thank John Strassner for the
opportunity to present this work, as well as years of thoughtful
comments on the use of knowledge in management. We also
thank Oslo University College for generously funding Prof.
Couch’s extended residence at the University, during which
time this work was done.

REFERENCES

[1] M. Burgess, “Probabilistic anomaly detection in distributed computer
networks,” Science of Computer Programming, vol. 60, no. 1, pp. 1–26,
2006.

[2] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik 1, pp. 269–271, 1959.

[3] A. Couch and M. Gilfix, “It’s elementary, dear watson: Applying logic
programming to convergent system management processes,” Proceed-
ings of the Thirteenth Systems Administration Conference (LISA XIII)
(USENIX Association: Berkeley, CA), p. 123, 1999.

[4] S. Pepper, Encyclopedia of Library and Information Sciences. CRC
Press, ISBN 9780849397127, 2009, ch. Topic Maps.

[5] ——, “The tao of topic maps,” in Proceedings of XML Europe Confer-
ence, 2000.

[6] M. Burgess, “Cfengine knowledge management,” CFengine AS, Tech.
Rep., 2009. [Online]. Available: http://cfengine.com/files/knowledge.pdf

[7] ——, “Knowledge management and promises,” Lecture Notes on Com-
puter Science, vol. 5637, pp. 95–107, 2009.

[8] ——, “A site configuration engine,” Computing systems (MIT Press:
Cambridge MA), vol. 8, p. 309, 1995.

[9] M. Burgess and R. Ralston, “Distributed resource administration using
cfengine,” Software practice and experience, vol. 27, p. 1083, 1997.

[10] M. Burgess, “Automated system administration with feedback regula-
tion,” Software practice and experience, vol. 28, p. 1519, 1998.

[11] ——, “Cfengine as a component of computer immune-systems,” Pro-
ceedings of the Norwegian conference on Informatics, 1998.

[12] J. Mickens, M. Szummer, and D. Narayanan, “Snitch: interactive
decision trees for troubleshooting misconfigurations,” in SYSML’07:
Proceedings of the 2nd USENIX workshop on Tackling computer systems
problems with machine learning techniques. Berkeley, CA, USA:
USENIX Association, 2007, pp. 1–6.

[13] A. Couch and N. Daniels, “The maelstrom: Network service debugging
via ”ineffective procedures”,” Proceedings of the Fifteenth Systems
Administration Conference (LISA XV) (USENIX Association: Berkeley,
CA), p. 63, 2001.

[14] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C. Yuan,
and Z. Zhang, “Strider: A black-box, state-based approach to change
and configuration management and support,” in LISA ’03: Proceedings
of the 17th USENIX conference on System administration. Berkeley,
CA, USA: USENIX Association, 2003, pp. 159–172.

[15] F. V. Jensen, U. Kjæ rulff, B. Kristiansen, H. Langseth, C. Skaanning,
J. Vomlel, and M. Vomlelová, “The sacso methodology for troubleshoot-
ing complex systems,” Artif. Intell. Eng. Des. Anal. Manuf., vol. 15,
no. 4, pp. 321–333, 2001.

[16] A. Couch, N. Wu, and H. Susanto, “Towards a cost model for system
administration,” Proceedings of the Nineteenth Systems Administration
Conference (LISA XIX) (USENIX Association: Berkeley, CA), pp. 125–
141, 2005.

[17] T. Eiter and G. Gottlob, “The complexity of logic-based abduction,” J.
ACM, vol. 42, no. 1, pp. 3–42, 1995.

[18] P. Liberatore and M. Schaerf, “Compilability of propositional abduc-
tion,” ACM Trans. Comput. Logic, vol. 8, no. 1, p. 2, 2007.

[19] G. Nordh and B. Zanuttini, “What makes propositional abduction
tractable,” Artif. Intell., vol. 172, no. 10, pp. 1245–1284, 2008.

[20] J. Parsons, “An Information Model Based on Clas-
sification Theory,” MANAGEMENT SCIENCE, vol. 42,
no. 10, pp. 1437–1453, 1996. [Online]. Available:
http://mansci.journal.informs.org/cgi/content/abstract/42/10/1437

[21] J. Parsons and Y. Wand, “Emancipating instances from the tyranny of
classes in information modeling,” ACM Trans. Database Syst., vol. 25,
no. 2, pp. 228–268, 2000.

[22] T. Forum, “Information framework (sid),” website. [Online]. Available:
http://www.tmforum.org/InformationFramework/1684/home.html

[23] K. M. Nelson, H. J. Nelson, and D. Armstrong, “Revealed causal
mapping as an evocative method for information systems research,” in
HICSS ’00: Proceedings of the 33rd Hawaii International Conference
on System Sciences-Volume 7. Washington, DC, USA: IEEE Computer
Society, 2000, p. 7046.

[24] K. M. Nelson, S. Nadkarni, V. K. Narayanan, and M. Ghods, “Un-
derstanding software operations support expertise: a revealed causal
mapping approach,” MIS Q., vol. 24, no. 3, pp. 475–507, 2000.

[25] J. Strassner, S. Meer, D. O’Sullivan, and S. Dobson, “The use of context-
aware policies and ontologies to facilitate business-aware network man-
agement,” J. Netw. Syst. Manage., vol. 17, no. 3, pp. 255–284, 2009.

[26] M. Burgess and A. Couch, “Autonomic computing approximated by
fixed point promises,” Proceedings of the 1st IEEE International Work-
shop on Modelling Autonomic Communications Environments (MACE);
Multicon verlag 2006. ISBN 3-930736-05-5, pp. 197–222, 2006.

[27] M. Burgess, “Promise you a rose garden,”
http://research.iu.hio.no/papers/rosegarden.pdf.


