
Alva L. Couch – Tufts University
Mark Burgess – Oslo City University

Explaining relationships
between entities
 A knowledge base describes relationships between

entities.
 Humans often need to understand relationships

between entities to troubleshoot a computer network.
 We describe how to create a “story” that concisely

describes relationships between two chosen entities.

This talk in a nutshell
 Unrestricted logical abduction is too much

explanation of a relationship between network entities
to be useful. (“The porridge is too hot.”)

 Using links between items without use of any logic is
too little explanation. (“The porridge is too cold.”)

 Our “stories” – based upon a very limited form of
abduction – are just right good enough.

How this work came about
 Mark asked Alva to comment on Mark’s new topic map

system for documenting Cfengine.
 Alva reported that it was frustrating; things he needed

couldn’t be found quickly enough by browsing.
 Mark told Alva to fix it…
 Several weeks and attempts later, Alva did…!

The problem with browsing
knowledge bases…
 …is that one doesn’t have time to browse!
 One doesn’t approach network knowledge with an

unfocused desire to learn.
 One browses with Rome already burning, and no

time to fiddle around!
 How can we simplify finding exactly the knowledge we

need in a knowledge base, when we need it?

Some failed approaches
 Using unrestricted computer logic is too time-

consuming and difficult to explain to a user.
 Considering connections – without logic – leads to

useless connections, e.g.,
 Cfengine is written by Mark.
 Mark wrote Analytical System Administration.
 So Cfengine is somehow connected to the book

Analytical System Administration???
 Conclusion: need a limited form of logical

reasoning that explains relationships of interest
(ROIs).

This work is difficult to
characterize…
 It is not

 natural language processing…
… even though it outputs natural language explanations…

 ontological reasoning…
… because it defines relationship semantics via
interactions between relationships (rather than object
semantics as interactions between objects)

 It is:
 a form of logical abduction…

… but it does logic via graph algorithms…
 a shorthand for

 Making new connections between entities.
 Simplifying fact bases via derived rules.
 Explaining derived connections in terms of existing ones.

Four relationships of interest
 X determines Y: X controls Y’s behavior.
 X influences Y: X has partial control over Y.
 X might determine Y: in some cases, X controls Y’s behavior.
 X might influence Y: in some cases, X has partial control over Y.

determines → influences
↓ ↓

might determine → might influence
 These are the target relationships about which we want more

information.
 (Note: modal relationships are encapsulated inside formal

symbols, e.g., might determine.)

Binary relationships
 Many (but not all) entity relationships are binary,

e.g.,
 The host muffin provides name service for the domain

cs.tufts.edu.
 The host houdini is part of the domain cs.tufts.edu.
 Therefore, the host muffin provides name service for the

host houdini.
This reasoning is a limited form of logical abduction,
i.e., it explains the relationship between muffin and
houdini in terms of their relationships to a third party
eecs.tufts.edu.

Weak transitive laws
 The inference in the previous slide looks something

like a transitive law:
If X provides name service for Y,
and Y contains Z,
then X provides name service for Z.

 We call this kind of rule a “weak transitive law”.
 We notate it as

<provides name service for,
contains,
provides name service for>

Parsing statements into
relationships
 Annotate the text with attributes:

 (The) host muffin provides name service for (the)
domain cs.tufts.edu.

 (The) domain cs.tufts.edu contains(the) host
houdini.

 Therefore, (the) host muffin provides name service for
(the) host houdini.

 We typeset nouns in fixed type, qualifiers in script,
and relationships via underlining.

Relationship to topic maps
 These sentences look like topic map associations as

described by S. Pepper.
• Consider “(The) host muffin provides name service for (the)

domain cs.tufts.edu.”
 muffin and cs.tufts.edu are topics, i.e., names about

which knowledge is stored.
 host and domain are topic roles, i.e., qualifiers that determine

the scope of topic names muffin and cs.tufts.edu,
respectively, in the context of the association.

 provides name service for is an association, i.e., a
relationship between topics.

Symbols and meanings
 As in topic maps, muffin, provides name service for , and
cs.tufts.edu are formal symbols, devoid of meaning.

 As in topic maps, every association has an inverse, e.g.,
 “(The) host muffin provides name service for (the) domain
cs.tufts.edu.”

has the inverse association:
 “(The) domain cs.tufts.edu uses name server host muffin.”

 Inverses for relationships are defined (in English), and never
inferred.

 Meanings are derived from where symbols appear in
relationships and laws.

 (Note: roles are part of the association: might write the above as
cs.tufts.edu domain uses name server host muffin.)

Basis for our troubleshooting logic
 A set of architectural facts, about how neighboring

entities relate to one another.
 A set of logical rules that allow one to infer how non-

neighboring entities relate to one another.

Our rules
 There are only two kinds of rules, with different

purposes: for relationships r, s, t and entities X, Y, Z:
 An implication r → s means

“If XrY then XsY”. These rules raise the level of
abstraction at which reasoning occurs.

 A weak transitive law <r,s,t> means
“If XrY and YsZ then XtZ”. These rules make new
connections between unconnected entities.

Layers of abstraction
 X provides DNS: a low-level statement, concrete.

↓

 X determines DNS: a higher level of abstraction.
↓

 X influences DNS: an even higher level of abstraction.
 DNS is used by Y: a concrete statement.

↓

 DNS influences Y: an abstract statement.
 Then, using <influences, influences, influences>,we infer

X influences Y, which can be explained as
 X provides DNS is used by Y: a story of X influences Y.
 Pattern: reason at a high level, explain at a concrete level.

A simple example
host01

host02

host03

user01

provides DNS for

provides file service for

is used by

influences

influences

influences

influences

influences

Story seen by user

Lifting
by

implication

Inferences under the hood:
Transitive closure under

<influences,influences,influences>

Are transitive laws enough?
 Many inferences are only weakly transitive:

<determines, is a part of, influences>
<is a part of, determines, determines>
<influences, is a part of, influences>
<is a part of, influences, influences>
<influences, is an instance of, might influence>
<is an instance of, influences, influences>

 These rules might be considered a definition of
influences.

A less trivial example
host01

DHCP server

DNS server

host02

is an instance of

feeds data to

has instance

influences

influences

influences

Story seen by user

Inferences under the hood:
<is an instance of, influences, influences>

<influences, has instance, influences>

Computing stories
 Relationships are sets.
 Semantic networks are graphs.
 Distance is # of weak transitive laws required to link

two topics.
 Computation uses variants of shortest-path algorithms

in graphs.

Logic and sets
 We can think of relationships as sets, e.g.,

provides name service for
= { (X, Y) | X provides name service for Y }

 An implication r → s raises the level of abstraction
of a statement from specific to more general, e.g.,
provides name service for → influences as
relationships means that
provides name service for ⊆ influences as sets.

 The rule r →s is equivalent with the assertion r⊆s

Weak transitive laws and sets
 <r,s,t> is also equivalent to a subset assertion:
 <r,s,t> means “If XrY and YsZ then XsZ.”
 If we let (r⊗s) = { (X,Z) | XrY and YsZ }
 Then the rule <r,s,t> is equivalent to

the assertion (r ⊗ s) ⊆ t.

Summary of set relationships
r’ s’
⋂ ⋂

r ⊗ s ⊆ t ⇒ r’ ⊗ s’ ⊆ t’
⋂

t’

Or, using our rule notation
r’ s’
↓ ↓

<r, s, t> ⇒ <r’, s’, t’ >
↓

t’

Why the set-theoretic formulation
is important
 The rules do not backtrack, so it is never necessary to

use backward chaining or logic programming.
 One can add information without restarting

computation.
 One can formulate computation in terms of graph

algorithms, rather than in terms of logic!

How the algorithm works
 Complete the facts by adding explicit inverses.
 Complete the rules by adding implied rules.
 Apply implied rules to completed facts.
 Compute minimum-distance facts by variant of all-

pairs shortest-path.
 (For the relationships of interest.)

Why the set-theoretic
characterization is important
 Can restart a partial calculation.
 Can add new facts or rules without starting over.
 Can implement the algorithm in a Map/Reduce

environment.

Some counter-intuitive aspects
of the logical calculus
 Modal relationships, e.g., might influence, are just

formal symbols like any other relationship.
 Modal relationships are defined by means of weak

transitive laws.
 The purpose of the laws is not to define logic, but

rather, to define terms in a language via their logical
inter-relationships.

 Thus this is not a calculus of logic, but rather, a
calculus of language and meaning.

Practical Applications
 Abducting the relationship between two elements X

and Y: this is a minimum-distance story of the
relationship between X and Y.

 Finding the most likely causes of a set of symptoms:
input is symptoms, output is the set of things that
influence them, in order of distance.

Some subtleties
 There is no way to retract a fact or rule.
 Rather we version the entities and relationships as

necessary to change their definitions.
 New facts correspond to a new entity.
 New rules correspond to new relationships.

Conclusions
 What we have here is not really computer logic.
 It is instead a clever way to manipulate natural

language to explain relationships.
 It looks like abduction on the surface, but its laws

choose convenient explanations rather than
inferring previously unknown truth.

 Next steps: Map/Reduce implementation, user testing.

Alva L. Couch – Tufts University
Mark Burgess – Oslo City University

	Human-Understandable Inference of Causal Relationships
	Explaining relationships �between entities
	This talk in a nutshell
	How this work came about
	The problem with browsing knowledge bases…
	Some failed approaches
	This work is difficult to characterize…
	Four relationships of interest
	Binary relationships
	Weak transitive laws
	Parsing statements into relationships
	Relationship to topic maps
	Symbols and meanings
	Basis for our troubleshooting logic
	Our rules
	Layers of abstraction
	A simple example
	Are transitive laws enough?
	A less trivial example
	Computing stories
	Logic and sets
	Weak transitive laws and sets
	Summary of set relationships
	Or, using our rule notation
	Why the set-theoretic formulation is important
	How the algorithm works
	Why the set-theoretic characterization is important
	Some counter-intuitive aspects �of the logical calculus
	Practical Applications
	Some subtleties
	Conclusions
	Human-Understandable Inference of Causal Relationships

