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Explaining relationships 
between entities
 A knowledge base describes relationships between 

entities. 
 Humans often need to understand relationships 

between entities to troubleshoot a computer network. 
 We describe how to create a “story” that concisely 

describes relationships between two chosen entities. 



This talk in a nutshell
 Unrestricted logical abduction is too much 

explanation of a relationship between network entities 
to be useful.  (“The porridge is too hot.”)

 Using links between items without use of any logic is 
too little explanation. (“The porridge is too cold.”)

 Our “stories” – based upon a very limited form of 
abduction – are just right good enough.



How this work came about
 Mark asked Alva to comment on Mark’s new topic map 

system for documenting Cfengine. 
 Alva reported that it was frustrating; things he needed 

couldn’t be found quickly enough by browsing. 
 Mark told Alva to fix it…
 Several weeks and attempts later, Alva did…!



The problem with browsing 
knowledge bases…
 …is that one doesn’t have time to browse!
 One doesn’t approach network knowledge with an 

unfocused desire to learn. 
 One browses with Rome already burning, and no 

time to fiddle around! 
 How can we simplify finding exactly the knowledge we 

need in a knowledge base, when we need it?



Some failed approaches
 Using unrestricted computer logic is too time-

consuming and difficult to explain to a user. 
 Considering connections – without logic – leads to 

useless connections, e.g., 
 Cfengine is written by Mark. 
 Mark wrote Analytical System Administration. 
 So Cfengine is somehow connected to the book 

Analytical System Administration???
 Conclusion:  need a limited form of logical 

reasoning that explains relationships of interest 
(ROIs). 



This work is difficult to 
characterize…
 It is not 

 natural language processing…
… even though it outputs natural language explanations…

 ontological reasoning…
… because it defines relationship semantics via 
interactions between relationships (rather than object 
semantics as interactions between objects)

 It is:
 a form of logical abduction…

… but it does logic via graph algorithms…
 a shorthand for

 Making new connections between entities.  
 Simplifying fact bases via derived rules. 
 Explaining derived connections in terms of existing ones.



Four relationships of interest
 X determines Y:  X controls  Y’s behavior.
 X influences Y: X has partial control over Y.
 X might determine Y: in some cases, X controls Y’s behavior. 
 X might influence Y: in some cases, X has partial control over Y.

determines → influences
↓ ↓

might determine → might influence
 These are the target relationships about which we want more 

information. 
 (Note: modal relationships are encapsulated inside formal 

symbols, e.g., might determine.)



Binary relationships
 Many (but not all) entity relationships are binary,  

e.g., 
 The host muffin provides name service for the domain 

cs.tufts.edu.
 The host houdini is part of the domain cs.tufts.edu. 
 Therefore, the host muffin provides name service for the 

host houdini. 
This reasoning is a limited form of logical abduction, 
i.e., it explains the relationship between muffin and 
houdini in terms of their relationships to a third party 
eecs.tufts.edu. 



Weak transitive laws
 The inference in the previous slide looks something 

like a transitive law: 
If X provides name service for Y, 
and Y contains Z, 
then X provides name service for Z. 

 We call this kind of rule a “weak transitive law”. 
 We notate it as 

<provides name service for, 
contains, 
provides name service for>



Parsing statements into 
relationships
 Annotate the text with attributes:

 (The) host muffin provides name service for (the) 
domain cs.tufts.edu.

 (The) domain cs.tufts.edu contains(the) host
houdini. 

 Therefore, (the) host muffin provides name service for 
(the) host houdini. 

 We typeset nouns in fixed type, qualifiers in script, 
and relationships via underlining. 



Relationship to topic maps
 These sentences look like topic map associations as 

described by S. Pepper. 
• Consider “(The) host muffin provides name service for (the) 

domain cs.tufts.edu.”
 muffin and cs.tufts.edu are topics, i.e., names about 

which knowledge is stored. 
 host and domain are topic roles, i.e., qualifiers  that determine 

the scope of topic names muffin and cs.tufts.edu, 
respectively, in the context of the association. 

 provides name service for is an association, i.e., a 
relationship between topics. 



Symbols and meanings
 As in topic maps, muffin, provides name service for , and 
cs.tufts.edu are formal symbols, devoid of meaning. 

 As in topic maps, every association has an inverse, e.g., 
 “(The) host muffin provides name service for (the) domain 
cs.tufts.edu.” 

has the inverse association: 
 “(The) domain cs.tufts.edu uses name server host muffin.” 

 Inverses for relationships are defined (in English), and never 
inferred.

 Meanings are derived from where symbols appear in 
relationships and laws. 

 (Note: roles are part of the association: might write the above as 
cs.tufts.edu domain uses name server host muffin.)



Basis for our troubleshooting logic
 A set of architectural facts, about how neighboring 

entities relate to one another. 
 A set of logical rules that allow one to infer how non-

neighboring entities relate to one another. 



Our rules
 There are only two kinds of rules, with different 

purposes: for relationships r, s, t and entities X, Y, Z:
 An implication r → s means 

“If XrY then XsY”. These rules raise the level of 
abstraction at which reasoning occurs. 

 A weak transitive law <r,s,t> means 
“If XrY and YsZ then XtZ”. These rules make new 
connections between unconnected entities. 



Layers of abstraction
 X provides DNS: a low-level statement, concrete. 

↓

 X determines DNS: a higher level of abstraction. 
↓

 X influences DNS: an even higher level of abstraction.
 DNS is used by Y: a concrete statement. 

↓

 DNS influences Y: an abstract statement. 
 Then, using <influences, influences, influences>,we infer 

X influences Y, which can be explained as 
 X provides DNS is used by Y: a story of X influences Y. 
 Pattern: reason at a high level, explain at a concrete level.



A simple example
host01

host02

host03

user01

provides DNS for

provides file service for

is used by

influences

influences

influences

influences

influences

Story seen by user

Lifting
by

implication

Inferences under the hood:
Transitive closure under

<influences,influences,influences>



Are transitive laws enough?
 Many inferences are only weakly transitive:

<determines, is a part of, influences>
<is a part of, determines, determines>
<influences, is a part of, influences> 
<is a part of, influences, influences> 
<influences, is an instance of, might influence>
<is an instance of, influences, influences> 

 These rules might be considered a definition of 
influences. 



A less trivial example
host01

DHCP server

DNS server

host02

is an instance of

feeds data to

has instance

influences

influences

influences

Story seen by user

Inferences under the hood:
<is an instance of, influences, influences>

<influences, has instance, influences>



Computing stories
 Relationships are sets. 
 Semantic networks are graphs. 
 Distance is # of weak transitive laws required to link 

two topics. 
 Computation uses variants of shortest-path algorithms 

in graphs. 



Logic and sets
 We can think of relationships as sets, e.g., 

provides name service for
= { (X, Y) | X provides name service for Y } 

 An implication r → s raises the level of abstraction
of a statement from specific  to more general, e.g.,
provides name service for → influences as 
relationships means that
provides name service for ⊆ influences as sets.

 The rule r →s is equivalent with the assertion r⊆s



Weak transitive laws and sets
 <r,s,t> is also equivalent to a subset assertion: 
 <r,s,t> means “If XrY and YsZ then XsZ.”
 If we let (r⊗s) = { (X,Z) | XrY and YsZ } 
 Then the rule <r,s,t> is equivalent to

the assertion (r ⊗ s) ⊆ t.



Summary of set relationships
r’ s’
⋂   ⋂

r ⊗ s ⊆ t  ⇒  r’ ⊗ s’ ⊆ t’
⋂

t’



Or, using our rule notation
r’    s’
↓  ↓

<r, s, t>  ⇒  <r’, s’, t’ >
↓

t’



Why the set-theoretic formulation 
is important
 The rules do not backtrack, so it is never necessary to 

use backward chaining or logic programming.
 One can add information without restarting 

computation. 
 One can formulate computation in terms of graph 

algorithms, rather than in terms of logic! 



How the algorithm works
 Complete the facts by adding explicit inverses. 
 Complete the rules by adding implied rules. 
 Apply implied rules to completed facts. 
 Compute minimum-distance facts by variant of all-

pairs shortest-path. 
 (For the relationships of interest.)



Why the set-theoretic 
characterization is important
 Can restart a partial calculation. 
 Can add new facts or rules without starting over. 
 Can implement the algorithm in a Map/Reduce 

environment. 



Some counter-intuitive aspects 
of the logical calculus
 Modal relationships, e.g., might influence, are just 

formal symbols like any other relationship. 
 Modal relationships are defined by means of weak 

transitive laws. 
 The purpose of the laws is not to define logic, but 

rather, to define terms in a language via their logical 
inter-relationships.

 Thus this is not a calculus of logic, but rather, a 
calculus of language and meaning.  



Practical Applications
 Abducting the relationship between two elements X 

and Y: this is a minimum-distance story of the 
relationship between X and Y. 

 Finding the most likely causes of a set of symptoms: 
input is symptoms, output is the set of things that 
influence them, in order of distance. 



Some subtleties
 There is no way to retract a fact or rule. 
 Rather we version the entities and relationships as 

necessary to change their definitions. 
 New facts correspond to a new entity. 
 New rules correspond to new relationships. 



Conclusions
 What we have here is not really computer logic. 
 It is instead a clever way to manipulate natural 

language to explain relationships.
 It looks like  abduction on the surface, but its laws 

choose  convenient explanations rather than 
inferring previously unknown truth. 

 Next steps: Map/Reduce implementation, user testing.
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