
On the Algebraic Structure of Convergence

Alva Couch1 and Yizhan Sun1

Tufts University, Computer Science, Medford MA 02155, USA,
couch@cs.tufts.edu, ysun@cs.tufts.edu,

WWW home page: http://www.cs.tufts.edu

Abstract. Current self-healing systems are built from “convergent” ac-
tions that only make repairs when necessary. Using an algebraic model
of system administration, we challenge the traditional notion of “con-
vergence” and propose a stronger definition with improved algebraic
properties. Under the new definition, the structure of traditional con-
figuration management systems is a natural emergent property of the
algebraic model. We discuss the impact of the new definition, as well as
the changes required in current convergent tools in order to conform to
the new definition.

1 Introduction

There are at present three main approaches to automated configuration manage-
ment. The “imperative” approach of ISconf and its relatives[16, 25, 26] is closest
to human practice; it expresses configuration actions as a series of commands
applied to a system that possesses a known initial state. The “convergent” ap-
proach of Cfengine and its relatives[3–6] expresses configuration as a set of known
states to assure in an otherwise unknown system. The “generative” approach of
LCFG and its relatives[1, 2, 14, 15, 18, 19, 24] controls state via regeneration of
individual configurations from an overarching ruleset, rather than by making
incremental changes to existing configurations.

The three configuration management strategies differ in their ability to han-
dle reordering of configuration tasks in time. Imperative commands can branch
based upon existing conditions created by other configuration management com-
mands; the order of operations always matters in any imperative scheme[16, 26].
Meanwhile, Cfengine’s “convergence” proponents argue that not only is order
irrelevant, but novel self-healing configuration management strategies can be
based upon random ordering of convergent actions[12, 17]. Which is the proper
strategy: deterministic ordering, random convergent ordering, or generative re-
construction? We think that part of the key to this question lies in algebraic
properties of the primitive operations for the three kinds of methods.

One problem with current “convergent” strategies is that a composition of
individual convergent actions need not be convergent as a composite action.
We propose a very simple algebraic model that justifies a new definition of
convergence, in which a composition of convergent actions remains convergent.
We argue that this definition is “more correct” because the definition allows us
to derive an appropriate algebraic structure for an effective self-healing system.



2 Semigroups of Actions

We first develop an algebraic model of configuration management. This model
adopts some curious conventions in order to make a minimal set of structural
assumptions about configuration management. We then allow algebraic structure
to arise from the axioms we choose for the system. In this way, we can analyze
the axioms based upon the system properties that they imply when used.

Configuration actions are commands or subroutines that change the state of
the managed system. We make no other assumptions about their nature. Let P
represent a set of actions. Each action p ∈ P acts upon a system X to produce
a change in configuration. Configuration actions might include things like:

– replace /etc/inetd.conf with the one at foo:/bar/repo/inetd.conf
– replace /etc/inetd.conf with the one at cat:/dog/repo/inetd.conf
– delete all udp protocol lines in /etc/services.
– cd into /usr/src/ssh and run make.

etc. One can compose actions p, q ∈ P in the natural way, by performing one after
the other from right to left, e.g., p ◦ q ◦ X = p(q(X)). We also use composition
notation for the final step q(X) = q ◦ X because a system itself is already
composed of actions, even those such as “buy system from vendor Y”. The
system itself is some kind of action (e.g., a recipe for building it) but that action
may not be in the set of actions P that potentially configure X .

To simplify notation, we ignore parameters for actions. Similar actions with
different parameters are treated as differing actions. For example, “run tftp with
source directory /home/tftp” and “run tftp with source directory /tftpboot”
are separate and distinct actions for our purposes.

3 Sequences of Actions

Given P a set of actions, we form the set of all sequences of actions F(P ) given
by

F(P ) = {p = p1 ◦ p2 ◦ · · · ◦ pk−1 ◦ pk | k > 0, pi ∈ P, 1 ≤ i ≤ k} ∪ {ε} (1)

where ε is the identity action that consists of doing nothing at all. This is the
free semigroup with identity over the alphabet P . Clearly F(P ) is an infinite set,
even though P is finite.

The free semigroup F(P ) consists of all possible sequences of actions. Many
beliefs about the nature of actions in P can be expressed as equivalence relations
≈i on F(P ), where ≈i is a set of pairs (p, q) where p, q ∈ F(P ). As usual,
equivalence relations are reflexive ((x, x) ∈≈i for all x ∈ F(P )), symmetric
((x, y) ∈≈i→ (y, x) ∈≈i), and transitive ((x, y), (y, z) ∈≈i→ (x, z) ∈≈i ).

In our physical interpretation of actions acting upon systems, two sequences
of actions are equivalent if they accomplish the exact same result.

Definition 1. Two configuration actions are equivalent if they achieve the same
effect and are interchangeable in all contexts.



In abstract terms, this means that equivalent actions are interchangeable within
a sequence of actions:

Definition 2. An equivalence relation ≈ is an action equivalence on F(P ) if
for all x, y, a, b ∈ F(P ), a ≈ b ↔ x ◦ a ◦ y ≈ x ◦ b ◦ y.

In other words, the substitution principle works. For the rest of this paper,
we assume that all equivalences on sequences of actions are action equivalences
according to this definition.

4 Convergent Actions

One concept of equivalence is that the actions are all convergent under the ac-
cepted definition of convergence[3, 10, 12]. An action p is idempotent with respect
to an action equivalence ≈ if repeating the action has the exact same effect as
doing it once, i.e., p ◦ p ≈ p. A set of actions P is idempotent if each individual
action p ∈ P is idempotent.

Definition 3. We say a set of actions P is weakly convergent if P is idempotent
as a set.

This is the definition of convergence that controls actions in many common con-
figuration management tools. In physical terms, an action p is idempotent if re-
peating the action has no effect. Our algebraic definition of convergence does not
include discussion of other attributes of convergence, such as non-intrusiveness.
Non-intrusiveness is not an algebraic property, just an implementation detail.

In this paper, we will commonly study classes of actions by constructing an
action equivalence relation that describes their properties.

Definition 4. A weakly convergent set of actions P (Definition 3) determines
an action equivalence relation (Definition 2) ≈1 on elements p, q ∈ F(P ).

According to this definition, p ≈1 q whenever p and q are sequences of actions
that differ only in the number of times they repeat specific elements in order.
For p1, p2, ..., pk ∈ P and a set of integer powers {ni | ni ≥ 1, 1 ≤ i ≤ k}, the
composition pn1

1 ◦ pn2

2 ◦ · · · ◦ pnk

k ∈ F(P ) is equivalent under ≈1 to any other
sequence with differing choices of powers ni > 0.

Unfortunately, the definition of weak convergence in Definition 3 has an unde-
sirable property. The composition of idempotent actions need not be idempotent
itself:

Proposition 1. There are idempotent actions p and q where q ◦ p is not idem-
potent as a composite action.

Proof. Idempotence of an action means that there is no difference in the resulting
state of the system after repeating the action. As a very simple counterexample,
suppose that there are two configuration state parameters x and y, where the
initial or “baseline” state of the configuration is that x = y = 0. Let p be the
action “if (x==1) then y=2”, and let q be “x=1”. Clearly repeating either p or



q has no effect, so they are idempotent in isolation. Also, q ◦ p just sets x to one
(remembering that actions are applied from right to left), but (q ◦p)◦ (q ◦p) sets
y to 2 as well. Clearly q ◦ p is not idempotent as an action if we start from the
baseline state x = y = 0. If, e.g., one sets x and y initially to 1, rather than 0,
q ◦ p is idempotent.

This proof illustrates the general principle that idempotence and convergence
of operations is only meaningful relative to a choice of baseline state of a system:
the state of the system before configuration actions begin. In this paper, we will
presume that the baseline state is appropriately limited so that idempotence is
present, and defer study of the structure of the baseline state for later work.

The reason that a composition of actions is not idempotent is that in the
proof above, one action p is stateful, so that when it is called determines what it
does. There is a stronger characterization of what it means to be truly convergent
that assures that compositions of actions are always idempotent.

Definition 5. A set of actions P is pairwise stateless with respect to an action
equivalence relation ≈i if for any two actions p, q ∈ P , p ◦ q ◦ p ≈i p ◦ q.

In other words, repeating p before p ◦ q (remembering that we are evaluating
actions from right to left) has no effect.

Definition 6. A set of actions P is stateless with respect to an action equiva-
lence relation ≈i if for any action p ∈ P and any sequence of actions q ∈ F(P ),
p ◦ q ◦ p ≈i p ◦ q.

Lemma 1. A set of actions P is stateless with respect to an action equivalence
relation ≈ iff it is pairwise stateless with respect to the same relation.

Proof. If P is stateless, it is clearly pairwise stateless. So assume that P is instead
pairwise stateless and proceed by induction on the length of q ∈ F(P ). If q has
length 1, then it consists of one element x ∈ P and

p ◦ q ◦ p = p ◦ x ◦ p hypothesis
≈i p ◦ x pairwise statelessness
= p ◦ q hypothesis

(2)

If we assume that the lemma is true for compositions q containing n components,
then for q = q1 ◦ · · · ◦ qn ◦ qn+1 containing n + 1 components,

p ◦ q ◦ p = p ◦ q1 ◦ · · · ◦ qn ◦ qn+1 ◦ p definition
= (p ◦ q1 ◦ · · · ◦ qn) ◦ qn+1 ◦ p associativity
≈i (p ◦ q1 ◦ · · · ◦ qn ◦ p) ◦ qn+1 ◦ p hypothesis
= p ◦ q1 ◦ · · · ◦ qn ◦ (p ◦ qn+1 ◦ p) associativity
≈i p ◦ q1 ◦ · · · ◦ qn ◦ (p ◦ qn+1) pairwise statelessness
= (p ◦ q1 ◦ · · · ◦ qn ◦ p) ◦ qn+1 associativity
≈i (p ◦ q1 ◦ · · · ◦ qn) ◦ qn+1 hypothesis
= p ◦ q1 ◦ · · · ◦ qn ◦ qn+1 associativity
= p ◦ q definition

(3)

so that p ◦ q ◦ p ≈i p ◦ q and we are done.



Definition 7. A set of actions P is convergent with respect to an action equiva-
lence relation ≈ if it is both idempotent and stateless with respect to that relation.

Note that if P contains the empty (identity) action ε, then statelessness straight-
forwardly implies idempotence: p ◦ p = p ◦ ε ◦ p ≈ p ◦ ε = p.

Statelessness can be an elusive property in practice. The conditional chmod
command “chmod u+X file” is convergent but not stateless. The “u+X” flag sets
the owner execute flag if any execute flag is set for owner, group, or all. Inter-
spersing a command that changes other execute flags, e.g., “chmod g+x file”
or “chmod a-x file”, can change the effect of a second instance of “u+X”. The
command “chmod 755 file” is by contrast both convergent and stateless.

5 Equivalent Actions

We can now define what it means for stateless actions to be equivalent.

Definition 8. For any set of actions P , let ≈2 represent the set of equivalences
required by Definitions 2 and 7.

In particular, p ≈2 q if there is a sequence of substitutions according to the
definition that will transform p into q.

Definition 7 makes the situation in Proposition 1 impossible. For p, q ∈ P ,
q ◦ p ◦ q ◦ p ≈2 (q ◦ p ◦ q) ◦ p ≈2 (q ◦ p) ◦ p ≈2 q ◦ (p ◦ p) ≈2 q ◦ p.

For any set S and equivalence relation ≈, the factor set S/ ≈ of the set and
the relation is a partition of the set into pairwise disjoint subsets Si, each of
whose elements are equivalent according to the equivalence relation. For a set of
actions P , consider the factor set F(P )/ ≈2. This is the set of distinct actions
represented by F(P ) under the equivalence ≈2.

Lemma 2. Every element in F(P ) is equivalent under ≈2 to one containing
only the leftmost instance of each duplicated action. Thus F(P )/ ≈2 consists of
a finite number of subsets.

Proof. Let x ∈ F(P ). The goal is to express the word x as another equivalent
word x′ possessing only the leftmost instance of each distinct action from x. If
x consists of one action p ∈ P , let x′ = x and we are done. So presume that
the lemma is true for strings of n objects and suppose that x consists of n + 1
objects p1 ◦ · · · ◦pn+1. Then y = p1 ◦ · · · ◦pn consists of n actions and the lemma
applies, so that there is a sequence y′ equivalent with y and containing only the
leftmost instance of each action in y. Then x ≈2 y ◦ qn+1 ≈2 y′ ◦ qn+1. Now if
qn+1 is not identical to some element of y′, y′ ◦ qn+1 consists of unique elements
and is an appropriate choice for x′. If it is identical to some qi that is a term of
y′, then by Definition 7, x ≈2 y′ ◦ qn+1 ≈2 y′ and y′ is an appropriate x′.

The purport of this proof is that even though the free semigroup F(P ) is infinite,
we only “care about” a finite factor set of that infinite set.

Lemma 3. Every element p of F(P ) is idempotent with respect to ◦ and ≈2,
i.e., ∀p ∈ F(P ), p ◦ p ≈2 p.



Proof. Given p ∈ F(P ), apply Lemma 2 to create an equivalent composition
p′ ≈2 p that contains no duplicates. Then

p ◦ p ≈2 p′ ◦ p′ Definition 1
≈2 p′ Lemma 2
≈2 p construction

(4)

and p is idempotent with respect to ≈2.

Lemma 4. If we define for p̃, q̃ ∈ F(P )/ ≈2, p̃ ◦̃ q̃ as the unique r̃ ∈ F(P )/ ≈2

such that
{a ◦ b | a ∈ p̃, b ∈ q̃} ⊆ r̃ (5)

then ◦̃ is well defined and (F(P )/ ≈2, ◦̃) is a semigroup.

Proof. The nature of equivalence is agreement on order of first appearance of
each action. By Lemma 2, p̃ and q̃ have unique elements p ∈ p̃ and q ∈ q̃ with
minimal length, and the sequence p ◦ q can be transformed by Lemma 2 to a
similar representative element r of r̃. The choice of r uniquely determines the
contents of r̃ by Lemma 2 and ◦̃ is thus well-defined.

Note that for p ∈ p̃ ∈ F(P )/ ≈2 and q ∈ q̃ ∈ F(P ) ≈2, p ≈2 q exactly when
p̃ = q̃.

A semigroup whose elements are all idempotents is called a band. We have
thus shown that:

Theorem 1. If P is a finite set of convergent actions obeying the equivalence
≈2 and ◦̃ is the operation defined in Equation 5, (F(P )/ ≈2, ◦̃) is a finite band.

Note that this is not true in general if equivalence is expressed instead ac-
cording to Definition 3. We have already shown that there are primitive actions
p, q for which p ◦ q is not idempotent. Not only is F(P )/ ≈1 not idempotent; it
may not be a semigroup at all. It is only a semigroup if one can show that for
some operation ◦ and every p̃, q̃ ∈ F(P )/ ≈1, p̃ ◦̃ q̃ ⊆ r̃ for some uniquely deter-
mined r̃ ∈ F(P )/ ≈1. This is possible but depends on the nature of particular
actions in P .

6 Value of Idempotence

The properties and possible structures of idempotent semigroups have been very
extensively studied[20–22]. As a summary, we quote the following well-known
results without proof.

A subsemigroup (R, ◦) of a semigroup (S, ◦) is a subset R ⊆ S closed under
◦, i.e., for r1, r2 ∈ R, r1 ◦ r2 ∈ R. A commutative band (S, ·) is one in which
all actions commute, i.e., for x, y ∈ S, x · y = y · x. A band Q is a matrix
band if it is isomorphic to some band (Γ × ∆, ·) where Γ and ∆ are (arbitrary)
disjoint alphabets, and for (x, y), (z, w) ∈ Γ ×∆, (x, y) · (z, w) = (x, w). In other
words, a matrix band is a particularly simple kind of band. Note in particular
that elements of a matrix band never commute except with themselves, because
(x, y) · (z, w) = (x, w) while (z, w) · (x, y) = (z, y).



Theorem 2. A semigroup all of whose elements are idempotents is a commu-
tative band of matrix bands of unit groups ([22], Corollary 2.14, page 320).

The proof of this theorem is too long to include, but the meaning for configu-
ration management tools is straightforward. A configuration management tool
implements a set of actions P , where we have shown that under the definition
of convergence we consider correct, F(P )/ ≈2 is a finite band. Its actions can
be partitioned into a set of disjoint non-commutative subsets B1, . . . ,Bn that,
considered as elements of a larger semigroup, commute. In this semigroup, the
product of two elements Bi and Bj is that unique semigroup Bk containing all
products of pairs bi ∈ Bi and bj ∈ Bj. Each member Bi of the larger commuta-
tive band represents all appropriate values for one parameter, and can be parti-
tioned further into subsets that form a semigroup of non-commutative members
Bi1, . . . ,Bik representing particular values for a parameter.

We have thus proven that configuration parameters exist in all cases, without
assuming that they do. Existence of parameters is an algebraic property that
arises from assumptions of action equivalence, idempotence, and statelessness!

7 Meaning of Commutativity

Commutivity or non-commutivity of idempotent actions has a rather simple
meaning.

Definition 9. Two idempotent actions a, b are consistent[12] iff they commute,
i.e., a ◦ b = b ◦ a.

Consistent actions agree in intent on how to arrange a configuration; inconsistent
actions do not. Note that orthogonal actions that affect differing parts of the
system are automatically consistent as well.

To understand this in a simple case, consider each action to be operating on
an extremely large vector of bits called “the configuration”. Every action asserts
some fixed values for a subset of bits of the configuration. Actions that agree
on any common values commute, including actions that act on different parts of
the configuration and thus cannot conflict. Conflicting actions do not commute.

As a concrete example, suppose that configuration consists of five bits a1 . . . a5.
A configuration is then a set of values for all five, i.e., a mapping from {ai} →
{0, 1}. Configuration actions are then assertions of values of particular inte-
gers. If configuration action B = {a1 := 1; a5 := 0} , this commutes with
C = {a1 := 1; a2 := 1} but not with either D = {a1 := 0; a2 := 0} or
E = {a5 := 1}.

8 Implications for Configuration Management Tools

We have shown so far that particularly nice properties are exhibited by any set
of configuration primitives possessing statelessness as described in Definition 7.
Unfortunately, few actions in current configuration management tools are state-
less.



8.1 Convergence and File Editing

The premier tool for convergent system administration is Cfengine[3, 4]. While
Cfengine’s abilities to copy files, replicate links, and change protections are fully
convergent in the above sense, its extensive facilities for editing files are not con-
vergent according to the above algebraic definition. Editing operations commonly
conflict in intent, thus rendering them both non-commutative and problematic.

For example, if one reorders the Cfengine editing actions:

editfiles:

all::

{ /etc/services

deleteLinesMatching "tftp"

appendIfNotPresent "tftp 6900/udp"

}

(that have obvious meanings) there will be no line describing tftp instead of the
new line describing tftp. File editing is procedural, not declarative; the action of
deleting an old configuration line before adding a new one is non-commutative.

8.2 Rethinking File Editing

The argument above suggests that the true mathematical language of convergent
system administration consists of self-consistent assertions of state, where sets
of non-conflicting and consistent assertions commute. These assertions are not
similar to editing commands; they assert intent without the implicit changes of
intent that plague any attempt to edit during reconfiguration.

To address this problem, we completely rethought and redesigned the process
of file editing to be declarative rather than procedural. Each file is treated like a
database, and editing commands become precise assertions describing contents
in the file. Rather than the above Cfengine editing script, one might write the
stateless assertion:

in /etc/services

where field1=tftp

line is "tftp 6900/udp"

or perhaps:

in /etc/services

where field1=tftp

make field2=6900/udp

or even (splitting up fields and renaming):

in /etc/services

where service=tftp

make port=6900 proto=udp



To have the effect of deleting a line, one asserts its absence:

in /etc/services

where service=tftp

omit

This is clearly more trouble than a simple edit; one must translate from impera-
tive language to declarative. The interpreter of the declaration must understand
the syntax of the file.

Adapting this idea to configuration files that are not linear lists is non-trivial
but feasible. One must decompose each file into regions describing particular
intents, and parse each separately. As files typically follow a natural hierarchy,
the assertion language naturally follows that structure. For example, to configure
a virtual server, one might write

in /etc/httpd.conf

with virtual server foo.bar.com

make port=9001

Accomplishing this level of declarative interaction with configuration is not
a single-layer process. There are several layers of interaction involved, from low
to high:

1. A syntactic layer that describes the syntax of each configuration file, i.e., a
parser.

2. A constraint layer that describes which configuration states are meaningful.
3. A policy layer that describes which configuration states are allowed by site

policy.
4. An intent layer that converses through the constraint and syntactic layers

to create a particular behavioral effect.
5. A validation layer that insures that configuration does indeed change behav-

ior.

A particular declaration, such as the examples above, travels downward (back-
ward) through these layers to achieve a particular intent.

Some layers are generic; the syntax of particular configuration files is portable
among all operating systems, as is the process of validating effects. For the most
part, intent is also portable, but there are two kinds of constraints: those imposed
by the system being configured and those configured by humans. Most of this
infrastructure is thus reusable, with the exception of the layer in the middle of
the sandwich that describes site policies. Creating the layers is significant work,
but most of it must be done once and is reusable everywhere.

8.3 Generative Management

A generative configuration management tool expresses actions in terms of the
complete replacement of configuration by new configuration. A typical tool re-
places all files at each configuration step, so that each configuration action ex-
presses a state for every configuration file. The simplest generative model is “wipe



the disk, re-install, and regenerate all configuration files”, as in MIT’s Project
Athena. More complex generative models such as LCFG[1, 2], PSGCONF[24],
database-driven models[18, 19], and some flavors of Arusha[14, 15] selectively re-
place all configuration files while leaving all else alone.

A generative configuration tool decomposes configuration into generative ac-
tions g ∈ G each of which produces and asserts the contents of an entire config-
uration. For any generative actions g and h, h ◦ g = h, i.e., the last action wins.
This means that each element of a generative semigroup is a “left zero” of the
semigroup, so that the structure is “left annihilating”. These h’s are the bi’s in
the above discussion.

One disadvantage of generative configuration management is the expense of
building the initial model, the “problem of semantic distance”[11]. Typical con-
figuration procedures are documented for humans in terms of scripts, not in
terms of assertions. Moving that configuration from the script to a generator
means turning scripts into assertions about their effects, a problem that is as
difficult as proving a script to be correct. The generator incorporates distributed
knowledge from multiple scripts into an expression of global knowledge, consis-
tency, and precedences.

8.4 Imperative Management

By contrast, managing a system by imperative methods is the most complex
method algebraically. The actions in this method are imperative scripts, so that
interactions between scripts can potentially be arbitrarily complex. Unfortu-
nately, scripts are also necessary. As a legacy, most systems are initially built
through scripts. In general, however, concatenating two scripts does not guar-
antee a composite effect of both scripts.

Scripts do have several advantages. They are the legacy way to accomplish
change and are already part of tasks such as package installation. They work
well in the absence of changes. They establish a baseline within which another
tool can work, and that is difficult to establish otherwise.

9 Conclusions

We propose a new and more strict notion of convergence that rules out common
practices previously considered to be convergent. Using this definition alone,
the properties of a typical configuration management system emerge from the
theory of semigroups. Using the prior definition, no such properties emerge, and
the resulting inelegance of the system leads to usability problems in crafting
strongly convergent actions from weakly convergent primitives.

In a simple algebraic sense, imperative, generative, and convergent meth-
ods form a hierarchy in which imperative methods are closest to the machine
and convergent methods closest to becoming self-healing. During initial machine
bootstrapping, imperative methods are inescapable; the cost of replacing them
with generative or convergent methods is too high. After initial configuration,



convergent methods have the potential to inadequately cover all required op-
tions, a behavior not exhibited by typical generative systems, The initial run
of a convergent system must “configure all variables” and thus has a generative
flavor.

So, we conclude from this study that an ideal configuration management tool
actually has attributes of each of the strategies:

1. An imperative bootstrap.
2. A generative initial configuration.
3. A convergent ongoing management process.

where the latter is convergent in the strong sense (Definition 7) rather than the
weak sense exhibited in most current convergent tools, including Cfengine.

We strive for order in a disorderly world. Strongly emergent properties are
the result of strong axioms and an uncompromising adherence. The cost of this
adherence is sometimes high. We feel that the value exceeds the cost, and that
future self-healing tools will adopt strongly convergent methods to assure the
algebraic elegance that naturally results in simplicity of use.

10 Acknowledgements

This work is not the product of individuals, but of a coordinated inquiry among
a large and diverse intellectual community. We are grateful to the Large-Scale
System Configuration mailing list (lssconf) for providing sustained discussion of
the strategies for configuration management and their impact. George Leger and
David Krumme both provided detailed, in-depth comments and corrections to
the mathematics. Special thanks to Mark Burgess, Paul Anderson, and Steve
Traugott, for providing the main fuel for this debate with their groundbreaking
work. This work was supported in part by an equipment grant from Network
Appliance Corporation.

References

1. P. Anderson, “Towards a High-Level Machine Configuration System” Proc. LISA-

VIII, USENIX Assoc., 1994.
2. P. Anderson, P. Goldsack, and J. Patterson, “SmartFrog Meets LCFG: Autonomous

Reconfiguration with Central Policy Control”, to appear in Proc. LISA-XVII,
USENIX Assoc., San Diego, CA, 2003.

3. M. Burgess, “A Site Configuration Engine”, Computing Systems 8, 1995.
4. M. Burgess and R. Ralston, “Distributed Resource Administration Using Cfengine”,

Software: practice and experience 27, 1997.
5. M. Burgess, “Computer Immunology”, Proc. LISA-XII, Boston MA, USENIX As-

soc., 1998.
6. M. Burgess, “Theoretical System Administration”, Proc. LISA-XIV, New Orleans

LA, USENIX Assoc., 2000.
7. Lionel Cons and Piotr Poznanski, “Pan: A High-Level Configuration Language”,

Proc. LISA-XVI, USENIX Assoc., Philadelphia, PA, 2002.



8. A. Couch, “SLINK: simple, effective filesystem maintenance abstractions for
community-based administration”, Proc. Lisa-X, USENIX Assoc, 1996.

9. A. Couch, “Chaos out of order: a simple, scalable file distribution facility for ‘inten-
tionally heterogeneous’ networks”, Proc. LISA-XI, USENIX Assoc., 1997.

10. A. Couch and M. Gilfix, “It’s elementary, dear Watson: applying logic programming
to convergent system management processes”, Proc. Lisa-XIII, USENIX Assoc.,
1999.

11. Alva L. Couch, “An expectant chat about script maturity”, Proc. LISA-XIV,
USENIX Assoc., 2000.

12. Alva L. Couch and Noah Daniels, “The maelstrom: network service debugging via
‘ineffective procedures’ ”, Proc. LISA-XV, USENIX Assoc., 2001

13. A. Couch, J. Hart, E. Greenlee, and D. Kallas, “Seeking Closure in an Open World:
A Behavioral Agent Approach to Configuration Management”, to appear in Proc.

LISA XVII, USENIX Assoc., San Diego CA, 2003.
14. Matt Holgate and Will Partain, “The Arusha Project: A framework for collabora-

tive Unix system administration”, Proc. LISA XV, USENIX Assoc., San Diego CA,
2001.

15. Matt Holgate, Will Partain, et al, “The Arusha Project Web Site”,
http://ark.sourceforge.net.

16. L. Kanies, “Practical and Theoretical Experience with ISconf and Cfengine”, to
appear in Proc. LISA XVII, USENIX Assoc., San Diego CA, 2003.

17. Frode Eika Sandnes, “Scheduling partially ordered events in a randomised frame-
work - empirical results and implications for automatic configuration management”,
Proc. LISA XV, USENIX Assoc., San Diego CA, 2001.

18. Jon Finke, “An improved approach for generating configuration files from a
database”, Proc. LISA-XIV, USENIX Assoc., 2000.

19. , J. Finke, “Generating Configuration Files: The Director’s Cut”, to appear in
Proc. LISA-XVII, USENIX Assoc., San Diego, CA, 2003.

20. P. A. Grillet, Semigroups: An Introduction to the Structure Theory, Marcel Dekker,
Inc, New York, NY, 1995.

21. J. M. Howie, An Introduction to Semigroup Theory, Academic Press, 1976.
22. E. S. Ljapin, Semigroups, American Mathematical Society, Providence, RI, 1963.
23. Mark Logan, Matthias Felleisen, and David Blank-Edelman, “Environmental Ac-

quisition in Network Management” Proc. LISA XVI, USENIX Assoc., Philadelphia,
PA, 2002.

24. M. D. Roth, “Preventing Wheel Reinvention: The Psgconf System Configuration
Framework”, to appear in Proc. LISA-XVII, USENIX Assoc., San Diego, CA, 2003.

25. Steve Traugott and Joel Huddleston “Bootstrapping an Infrastructure”, Proc LISA

XII, USENIX Assoc., Boston, MA 1998.
26. Steve Traugott and Lance Brown, “Why order matters: Turing equivalence in au-

tomated systems administration” Proc. LISA XVI, USENIX Assoc., Philadelphia,
PA, 2002.


