On the Algebraic Structure of Convergence

Alva Couch and Yizhan Sun Tufts University

> couch@cs.tufts.edu, ysun@cs.tufts.edu

Background

- System and network administration (network configuration management)
- CFengine provides convergent behavior.
- Observation: compositions of convergent processes are not always convergent.
- Example: file editing.

Convergent Configuration Management Challenges

- Why can compositions of convergent actions lead to confusing and even divergent behaviors?
- What limits on practice will assure predictable responses to convergent processes?

Our Approach

- Express self-healing as a result of applying sequences F(P) from a finite set of convergent operations P={ p₁, p₂, ... p_n }.
- While F(P) is infinite, effects of F(P) on a particular machine are finite.
- Express algebraic properties of F(P) as equivalence of effect, e.g., p≈q means that p and q have the same effect.
- Study factor structure F(P)/≈, a finite set of equivalence classes of operations.

Why Equivalences are Important

- *F*(P)/≈ (the set of equivalent classes of operations) represents **achievable states**.
- Expense of validating a self-healing system varies with the number of achievable states.

Kinds of Algebraic Equivalences

- Idempotence: p_ip_i≈p_i
- Pairwise statelessness: p_jp_ip_j≈p_jp_i
- Statelessness: p_n...p₁p_n≈p_n...p₁
- Sequence idempotence (or idempotence of *F*(P)): p_n...p₁≈p_n...p₁
- Operations are written right to left, i.e.,
 p_n...p₁(S)=p_n(...(p₁(S))...)

Preliminary Algebraic Results

Preliminary Algebraic Results

pp≈p and qq≈q does not insure qpqp≈qp

- Baseline: x=y=0
- p: if (x==1) then y:=2
- q: x:=1
- qp: { x=1, y=0 }
- qpqp = q(pq)p: { x=1, y=2 }
- A composition qp of idempotent actions q,p need not be idempotent.

Case Study: CFengine File Editing

```
editfiles:
    all::
        { /etc/services
            hashCommentLinesContaining "tftp"
                  appendIfNotPresent "tftp 6900/udp"
        }
```

- Each operation by itself is convergent.
- Paired, they fill the file with useless comments.
- Consider what happens if one uses uncommentLinesContaining "tftp" on the result.

More Editing Problems

- deleteLinesMatching "ftp"
 - Not specific enough; will delete lines containing "tftp" as well as "ftp".
- appendIfNotPresent "tftp 6800/udp"
 - Does not sense duplicate records with different port.

What Goes Wrong With Editing

- Non-convergent compositions allow proliferation of latent states.
- State proliferation causes uncertainty in applying further edits.
- Problem is syntax. Instead we need something like:

```
assert service=tftp port=6900 proto=udp
retract service=tftp
```

Statelessness

- A set of operations is stateless if the result of a single operation q is independent of any prior application: qp_n...p₁q≈qp_n...p₁
- Property of a set of operations, not a single operation.
- Depends upon choice of baseline state.
- Sufficient but not necessary to prevent state proliferation.

Facts about Statelessness

 Sufficient but not necessary to assure sequence idempotence:

$$p_{n}...p_{1}p_{n}...p_{1}=p_{n}...p_{1}$$

- Sequence idempotence has some nice properties:
 - Every sequence equivalent to one including each operation at most once
 - Resulting state space is finite with size≤2ⁿ,
 n=number of operations

A Curious Result

- For stateless sets of operations, we can prove that configuration parameters exist!
- A band is a semigroup for which all elements are idempotent: pp=p.
- A commutative band is one in which pq=qp for all p,q.
- A matrix band is one in which pq≠qp for all p,q.

The Structure Theorem

- If P is sequence-idempotent, then F(P)/≈ can be viewed as a commutative band of matrix bands of unit groups. Construction:
 - Express F(P)/≈ as a disjoint union of subsemigroups
 C_i, where the C_i form a semigroup themselves.
 - Define C_jC_i as the unique set C_k where for c_i in C_i and c_j in C_j , c_jc_i is in C_k .
 - This can be done to ensure that {C_i} is commutative,
 while each C_i by itself is a matrix band.

Inferred Parameters

- C₁...C_m represent orthogonal parameters
 (C_iC_i=C_iC_i)
- Contents of each C_i represent settings (c_{1i}c_{2i}≠c_{i2}c_{i1})

Conclusions

- Statelessness of operations leads to sequence idempotence
- Sequence idempotence is highly desirable
 - Reduction of achievable states
 - Creation of an ideal parameter space
- Achieving sequence idempotence requires changes in practice
 - Avoiding stream edits
 - Expressing changes as assertions.

Just a Beginning

More Information

- Alva L. Couch
 Computer Science
 Tufts University
 Medford, MA USA 02155
 couch@cs.tufts.edu
- LISA Paper: Couch, Hart, Greenlee, and Kallas, "Seeking Closure in an Open World", Proc. LISA03, Oct 29-31,2003