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Abstract. We present a resource management algorithm based upon
guided “walks” within a system state space. Walks are guided via sim-
ple predictions of optimum behavior whose accuracy increases as system
state approaches a predicted optimum. Optimum behavior is defined as
maximizing payoff, which is the difference between value of provided
service and cost of providing the service. Feedback between prediction,
movement in the state space, and direct observation of behavior allows
the algorithm to track optimum payoff, even though there is no detailed
model of system behavior. Efficiency of the algorithm is defined as the
ratio between observed and optimum payoffs, and can be estimated with-
out reference to a detailed model. We demonstrate by simulation that,
under commonly encountered conditions, our algorithm can achieve near-
optimal behavior. Our strategy is thus a potentially viable alternative to
management based upon closed control loops in many practical situa-
tions.

Keywords: autonomic computing, convergent operators, computer im-
munology, emergent properties, Cfengine

1 Introduction

Most management paradigms are based upon the possession of a detailed model
of assumed behavior and the ability to micro-manage configuration change[1–3].
At Hot Autonomic Computing 2008 (HotAC2008), three grand-challenge prob-
lems were identified for autonomic computing[4]:

1. Developing more accurate models of system behavior.
2. Ability to compose autonomic control systems and predict behavior of com-

posed systems.
3. Increasing user trust of autonomic systems.



The consensus of the group was that with better models, autonomic control
loops become more predictable; with the ability to compose loops, multi-vendor
solutions become possible; and that these challenges are linked with the funda-
mental problem of trust and expectation: the user needs to know what to expect
and what to trust.

In this paper we dispute the assumed correlation in prior work between knowl-
edge and outcome, and show that one can (literally) profit by embracing emer-
gent results of highly adaptive management processes.

We approach the challenges above from a different point of view. Before au-
tonomics was proposed, Burgess described a notion of computer immunology[5],
based upon the idea that systems can be managed by guiding system states
towards desired behavior using what might be considered a thermodynamic (or
economic) approach. Autonomic computing can be “approximated” by applica-
tion of immunological actions[6]; this is the theoretical framework for the man-
agement tool Cfengine[7, 8]. In an immunological approach, a model of behavior
is only indirectly linked with the function of the autonomic system, which can
be described as an emergent property of an underlying set of processes. In spite
of much interest in emergent properties[9, 10], few engineers truly believe that
emergence can deliver reliable results; this is a part of the trust challenge of auto-
nomic computing. Our experience is that emergent properties can be guaranteed,
even within relatively tight tolerances.

We began this work by asking about the kind of autonomic control that
would be appropriate to implement in Cfengine. In turn, we asked ourselves
how much of a model of system behavior needs to be understood by such an
autonomic control system. The answer to this question has turned out to be
surprising and counter-intuitive. Rather than “learning” the model of system
behavior, one can base a management strategy on remaining flexible and highly
reactive to observed changes. This approach is simpler, more adaptive, and more
composable than approaches based upon learning models.

2 Cost, Value, and Payoff

Inspired by current work in Business-Driven IT Management (BDIM)[11, 12],
we took a very basic, high-level view of autonomic control, based upon the
objective of balancing concepts of business cost and value. Cost refers to the
cost of operating and managing a system, while value refers to the value of
operating the system. The payoff function for operating a system is its value
minus its cost, which varies over time. Given some estimate of best payoff, the
efficiency of a management system is the quotient of the achieved payoff, divided
by the best achievable payoff.

Our model of autonomic control is shown in Figure 1. A system consumes
resources (R) and exhibits performance (P ) subject to outside forces L (load). A
parameter closure Q[13–16] controls resource levels based upon interaction with
multiple external agents (A) that relay value (V ) information to Q. Q knows
about the cost C(R) of resources, while the agents know about and describe value
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Fig. 1. Our model of autonomic resource control. Q is a resource closure.

V (P ) to Q1. Q’s job is to manage R to balance value and cost and maximize
the net payoff π(P, R) = V (P ) − C(R).

We incorporate as little information about behavior as possible. In particular,
we have no precise knowledge of external load drivers L, other than what can be
gleaned from direct observations of P and R. We do not assume that the function
P (R, L) (relating resources to performance) is known, nor do we assume any
entity in the system can even measure L directly other than through its effects
on P (R, L). We do not even assume that the transfer function P remains the
same function over time; it may vary due to unforeseen forces, e.g., a human
being unexpectedly upgrading server hardware.

3 Prior Work

A theoretical formulation of maintaining state was proposed initially by
Burgess[5, 17] and refined via several iterations, eventually leading to the con-
cept of promises[18, 19] to represent statements about the intent of autonomous
components. The assumptions of this work include that:

1. All agents within a system are autonomous.
2. All cooperation between agents is voluntary.
3. Management occurs in an open world in which unforeseen changes can occur

without notice.

Our management paradigm is a natural outgrowth of the assumptions of
Cfengine and promise theory, e.g.,communications between agents and Q are
promises.

In contrast to this, much of autonomic computing is based upon feedback
loop controllers[1] which represent so different a management strategy that the
two strategies may well be incommensurate:

1 To paraphrase an old programming aphorism, Q knows the cost of everything but
the value of nothing (like C), while A knows the value of everything but the cost of
nothing (like LISP).



1. Agents within a system are interdependent.
2. Cooperation is compulsory.
3. Management occurs in a closed world in which all (or at least most) achiev-

able system states and management alternatives are known in advance.

One reason it is difficult to compare our approach with what is normally
called “autonomic computing” is that the two approaches actually solve different
problems. Autonomic computing studies how to manage a controlled environ-
ment, such as a data center, while our approach studies emergent properties of
management mechanisms in an open world, which includes data centers but also
such disparate examples as ad-hoc wireless networks and networks of intelligent
appliances. Our mechanisms are best conceptualized as influencing rather than
controlling the managed system. While autonomic computing controls the man-
aged system, our approach instead “nudges” the system state toward a more
appropriate state over time. Most important, we do not assume that our ap-
proach is the sole influence acting on the system.

4 Initial Experiments

Initial simulations of this management paradigm exposed a simple algorithm for
maximizing π in the case where C and V are monotonic and invertible functions
of R and P , respectively, i.e., C(R+∆R) > C(R) for ∆R > 0, and V (P +∆P ) >
V (P ) for ∆P > 0. We also assume P is a monotonic and invertible function of
R for any constant level L0 of L, i.e., P (R + ∆R, L0) > P (R, L0) for ∆R > 0.
The design and behavior of this algorithm are described in [20].

In the algorithm, agents A send estimates of ∆V/∆R to Q, which combines
those estimates with ∆C/∆R to obtain an estimate of ∆π/∆R. Q then uses this
estimate to decide whether to increase or decrease R by some constant increment
∆R. Feedback in the system is expressed in terms of the value estimates ∆V/∆R
in response to changes in R.

This algorithm exhibits some surprising behaviors when exercised in the con-
text of a periodically varying (sine-wave) test load L. Very naive estimates of
∆V/∆R(based upon just a few pairs of measurements of V and R) suffice, and
more information degrades the efficiency of the total algorithm, because errors
in estimating V (P (R, L)) without knowing about changes in L dominate errors
in estimating the function precisely. Thus a very naive estimate of the function
V (R) leads to a usable estimate of ∆V (P (R))/∆R, and exhibits efficiencies in
the high 90’s, even though the estimates of ∆V/∆R appear to be chaotic due
to lack of knowledge of L. The algorithm does not rely upon any form of ma-
chine learning, but instead, relies upon agility in responding to changes in input
data, as well as controlled experimentation to determine dynamically evolving
alternatives.

It is just as important to note what failed to be useful. Using estimates to
determine anything more than the direction in which to change R led to chaos
in the managed system, while larger changes in R prevented the agents A from
accurately estimating ∆π/∆R.



5 Analogy with Thermodynamics

The management of low level resources by high level constraints is directly anal-
ogous to the study of heat-energy in a hydrodynamic (adaptive) system. Burgess
has discussed how computer systems exhibit basic thermodynamic behavior in
a number of ways, as they exchange information with their environments[21].

Our management approach is analogous to a ‘heat-pump’ (or refrigerator)
for performance. As a system changes (e.g., becomes “cold”) due to the exter-
nal demand for its energy (performance), we must replenish by supplying the
required energy deficit (adding resources). Our aim is to make this process effi-
cient, by pumping just the right amount of resources to meet demand, and not
over-allocating resources2.

Consider a data center or computer system whose purpose is to deliver a
service S at a given rate. S might be measured in transactions per second, for
instance3. The computer system is composed of many resources that change at
different rates, but the net result is to deliver the service S at a given rate (i.e. a
speed of transport). This is analogous to the physics of a hydrodynamic process,
in which one has a fluid, composed of atoms flying around at a variety of speeds,
and collectively resulting in the transport of fluid at some collective rate v.

At the microscopic level, physics is about collisions and transfer of momentum
through interactions, but at the hydrodynamic level, we abstract away these
microscopic details and talk about the high level (bulk) properties. We do not
need to know about the microscopic details to understand macroscopic behavior,
because the two scales are only weakly coupled.

“Energy” is a collective scale for quantifying (present or potential) activity.
Energy is converted and moved by a transfer of “heat” or “work”, including:

– Q: Heat - an exchange of activity. Heat is modeled as a fluid that can be
injected or extracted from a container, just as a service can be delivered.
Heat is the service provided by a thermal reservoir (e.g. a server array). A
flow of heat is a redistribution of service workload.

– U : Internal energy - a store or reservoir of internal capacity. This is a function
of the state of a system.

– W : Work - the change incurred by allowing macroscopic motion to take
place. This is analogous to computation.

Energy or resources are conserved in a closed system, so

U = Q + W

i.e., the total internal activity is a result of the heat injected and the work done
on the system. Since only differences matter4, we often write the closure rule as

dU = dQ + dW

2 Though our algorithms can be configured to “over-provision” resources to handle
peak load by appropriately modifying concepts of cost and value.

3 In our simulations, we actually measure performance as frequency = 1/rate to make
a few calculations more straightforward.

4 There is no absolute concept of value, without grounding.



where the slashed-d’s indicate imperfect differentials that cannot be integrated
to give estimates of Q or W . Only U is a function of the resources of the system;
Q and W are not necessarily functions of resources, but rather, behave like extra,
uncontrolled resources themselves.

In our analogy, we must be careful in comparing energy to service. A word like
“performance” describes a rate or velocity as a potentially chaotic and dynamic
low-level concept, and is not a static, high-level concept like heat. To reason
about performance at a high level, we must define how we value that performance
or, alternatively, define its energy content. As our high-level energy concept, we
define a payoff Lagrangian function π(P, R) = V (P )−C(R), where P = P (R, L).
Equality in the above is an equilibrium or quasi-static property.

To complete the analogy with the hydrodynamic problem:

– Resources R correspond to internal state. So ∆U corresponds to ∆C(R) – a
change in energy state for internal resources.

– Performance P (R, L) contains external effects, driven by changes in R, so
∆P represents work ∆W .

– The payoff π corresponds to heat exchange. We would like to be able to
generate or remove heat (depending on the sign), like a pump/refrigerator.
So this is our product.

Thus, if C, π, and V were continuous, we might write:

dC = dV − dπ

where only C is a true function of R. Since these are in our case step functions,
we write ∆C = ∆V − ∆π, which corresponds to our definition of π.

Note that we are describing changes to a steady state, not the steady ex-
change of service transactions. C(R) is a function of state, but V (P ) is not,
since we do not have a closed expression for it. To make a complete determinis-
tic model one would need to relate L to π.

Thermodynamics shows us that we do not need detailed information about
this relationship in most cases. In thermodynamics, it is usually sufficient to
describe scenarios of constant entropy, which are projections of the external
system into our state-space. We thus employ an equilibrium approach to bypass
the need for information we do not have[22].

6 Discretizing Payoff

The continuum algorithm described in Section 4 requires monotonic and invert-
ible V , C, and P . It cannot be applied when V or C are not invertible, e.g.,
when V and C are monotonic step functions that map multiple performance
values and resource levels to the same value and cost, in like manner to many
common Service-Level Agreements(SLAs). Viewed as a function, the simplest
possible SLA is a function V (P ) that is 0 unless requirements (lower bounds)
for P are met, and has some constant payoff v0 if those requirements are met.



In like manner, the cost of a particular physical system configuration is often a
step function, e.g., one might allocate a whole rack at a time to a task in a cloud.
Of the functions in the original scheme, only P (R, L) remains invertible in R for
fixed L: adding resources always improves performance (at least somewhat).

Again, algorithms for managing this system emerged via simulation of several
possible options. The new algorithms have little resemblance to the algorithms
for the invertible case, but also expose a bit more of the quandaries involved in
this form of management.

7 Our Algorithm

The goal of the new algorithm is to estimate which way to change R based upon
a limited amount of performance data (expressed as ordered pairs (Ri, Pi)). The
goal of changing R is to maximize a payoff function π = V (P )−C(R) where C(R)
is a cost step-function and V (P ) is a value step-function. The main problem in
combining these functions into a meaningful estimate of payoff π is that P and
R are not commensurate, in the sense that there is no function P (R) such that
V (P (R)) = V (R) represents value. P is not just a function of R, but also a
function of L. If there were such a function P (R), then π(R) = V (R) − C(R)
would be an estimate of the total payoff function, which we can maximize. This
is only true, however, if L is held constant, and then represents an equilibrium

state for the managed system.
In the new algorithm, each agent A makes an estimate Pest(R) of P (R) from

a small number of pairs of samples (Ri, Pi) using linear least-squares approx-
imation. In this paper, the number of samples used for this approximation is
w = 10. The agent uses this estimate to compute an estimate of the value func-
tion Vest(R) = V (Pest(R)). This is a matter of transforming only the input axis
to the step function V , and the output axis does not change; converting V (P )
to Vest(R) only moves the transition boundaries at which the step function V
changes value in its domain, and does not affect its range. As P is monotonic and
invertible in R, the axis transformation always leaves the transition boundaries
in V in the same order, so that Vest(R) remains simply increasing like V (P ).

Each agent A then forwards its estimate of the function V (R) to Q, which
subtracts the function C(R) to estimate the function π(R). Relative to the cur-
rent value of R, Q computes the nearest value Rtarget of R at which the estimate

of π(R) is maximum. Q increments R in the direction of Rtarget, and then the
whole process repeats with new agent estimates of V .

Note that the algorithm behaves predictably even though its estimates are
often inaccurate and its decisions are often wrong, so much so that we might
characterize the estimates as chaotic5. Each individual estimate is a micro-scale
event, which can be far from accurate, while overall behavior at the macro scale
remains near-optimal. As in the invertible case, the estimates of P (and thus

5 But this is a misconception due to lack of information. It is not truly “chaotic” in a
dynamical systems sense, because L is deterministic and determines P , but the fact
that we cannot observe L makes P seem to behave randomly to an observer.



of V ) are highly error-prone, in the sense that changes in the hidden variable
L are not accounted for in the model. But, for the algorithm to work properly,
all that is required is that the estimates are statistically correct, or “correct on
average”. When L stops changing as rapidly, estimates become more accurate
and the management system corrects its prior errors in judgment.

The algorithm also actively compensates for estimation errors. A discards
duplicate, older measurements of P for the same R when estimating P (R). Q
employs several heuristics, including:

1. Limiting the impact of an erroneous estimate by limiting the resulting change
in R to a constant ∆R per time step.

2. Keeping R relatively constant whenever its estimate indicates that R is op-
timal.

3. Periodically checking (every w steps) that a seemingly optimal resource set-
ting R remains optimal, by perturbing R by one unit ∆R inside an optimal
zone. This perturbation results in a revised estimate of V .

8 Time-State Diagrams

A crucial difference between the invertible and step-function cases is that “time-
state-diagrams” become important to understanding the behavior of the algo-
rithm. The step functions in effect at a given time t0 (for a given unknown value
L0 of L) determine a global payoff function π(R) = V (P (R, L0)) − C(R) that
separates the values of R into a state diagram with specific payoffs. Our estimates
πest = Vest(R) − C(R) are also estimates of time-state diagram structure. The
best possible payoff for π is approximated by the region with maximum payoff
in πest.
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Fig. 2. Attempting to estimate all of the cutoff points for the step-function V leads to
seemingly chaotic predictions but generally acceptable tracking.

One way to exhibit the behavior of the algorithm is via a “time-state dia-
gram” as depicted in Figure 2. Each diagram of the figure has a background
that is a theoretical time-state plot for R, based upon a known L that is not
measurable by agents A or closure Q. The x-axis of each diagram represents



time while the y-axis represents values of R. The horizontal and curved lines
on the diagram represent theoretical cutoffs at which step-functions change in
value. The horizontal lines represent increases in the cost function C, where cost
increases from below to above. The curved lines represent theoretical increases
in the value function V (P (R, L)) due to changes in L, where value increases
from below to above. The curved lines are based upon complete (theoretical)
information for L that agents A do not possess and must estimate. The curved
lines vary in a periodic pattern based upon a sine-wave form for L.

It is best to think of V and C not as functions, but as sets of constraints on
value and cost. In each of these diagrams, since the horizontal and curved lines
represent all transitions in payoff, each delimited region bounded by lines is a
zone of constant payoff; a value of R anywhere in a region achieves the same
payoff. The theoretical regions of maximum payoff are shaded in gray; these are
the target regions for R. In this figure there are several target regions for each
point in time, corresponding to several different solutions to obtaining the same
overall payoff.

In the figure, the left-hand diagram contains the trajectory for R over time.
π = V − C is optimal when R lies in a gray region, and non-optimal otherwise.
The middle diagram depicts the algorithm’s estimates for value level curves,
where each circle represents an inference of some cutoff in the value function.
These are only approximations and are often in error; the seemingly chaotic
changes in these estimates will be useful later. The right-hand diagram depicts
the algorithm’s estimates of optimal R, one per cycle.

9 Performance Evaluation

In evaluating this and similar algorithms, one cannot rely on traditional tech-
niques for performance evaluation that compare performance to a theoretical
best case. While in our simulations the theoretical best case is known, in re-
alistic situations, the theoretical best case is not merely unknown. Given our
framework of assumptions, it is also unknowable, in the sense that there is no
mechanism for observing and learning about load L, and thus no mechanism for
fully understanding performance P (R, L).

There are subtle benefits to limiting knowledge. Consider a scenario in which
a hacker gains access to a computer and starts utilizing resources. In a traditional
autonomic control environment, the performance model would be invalidated by
this hidden resource drain, while in our case, there is no model to invalidate.
Instead, our algorithm would adapt to the new behavioral conditions without
even recognizing that there has been an overall change in state, and try to
guarantee performance in the presence of the intrusion. Our strategy is not an
intrusion-detection tool: it reacts to anomalies without detecting them.

Another positive attribute of lack of knowledge is that multiple management
algorithms of this kind can be composed without knowledge of one another,
e.g., to manage multiple resources. Each algorithm instance will influence L,
which will indirectly influence other instances, but the overall effect will be



that each algorithm optimizes its own parameters in isolation from the others.
Coordination is achieved by mutual observation, and not by communication.

9.1 Observable Performance Problems

While comparing the algorithm to best case behavior is infeasible, several kinds
of performance problems are readily observable in a trace of the algorithm’s
behavior:

1. Inaccuracy resulting from inaccurate estimates of V and inappropriate rec-
ommendations for changing R.

2. Lag between observing a performance problem and reacting via a change in
R.

3. Undershoot in which R takes time to approach an optimal value (either from
above or below).

4. Overshoot in which the increment ∆R chosen for R is too large to allow R
to remain in a small optimal region.

It is somewhat ironic that an algorithm that does not explicitly consider time
can only be analyzed by considering time. The best way to understand the
algorithm’s behavior is to remember that all of our parameters are functions of
time, so that R = R(t) and L = L(t), and thus P = P (t) = P (R(t), L(t)). All
of the observable performance problems can be characterized in terms of the
behavior of P over time, compared with the behavior of R.

Lag in the algorithm is a direct result of any change whatever in L. By the
time information is available, performance has been substandard for a measure-
ment cycle already. This kind of error is always present any time the resource
level becomes non-optimal.

Undershoot occurs when a new recommendation for R is distant from a
current value. In this case, we see a sequence of linear changes in R that may
or may not map to actual changes in payoff. When we observe an undershoot
in the trace, all we can do is to estimate the worst-case scenario in which the
undershoot happened for justifiable reasons. It may also be that the current
value of R is optimal and the undershoot does not affect the payoff function, or
that the undershoot is due to pursuing an erroneous recommendation.

Overshoot describes a condition in which the increment ∆R of R is too large
to allow R to settle into a region of maximum payoff. The symptoms of overshoot
include rapid oscillation between two adjacent values of R with no settling down.
This is due to the algorithm recommending a downturn for the high value and
an upturn for the low value.

9.2 Efficiency

To quantify the algorithm’s behavior, we must develop a high-level concept of
efficiency. The efficiency of our management paradigm during one time step
might be characterized as

πobserved/πbest



where πobserved represents one measurement of observed payoff and πbest repre-
sents a corresponding (theoretical) maximum payoff. The efficiency of our man-
agement paradigm over time might be defined as the ratio of observed payoff to
best payoff, e.g., the ratio

Etheoretical = (Σπobserved)/(Σπbest)

where sums are over time. In both cases, the maximum efficiency is 100 per-
cent, which corresponds to a situation in which observed and theoretically best
payoffs always agree. This is impossible due to observation lag, and a certain
amount of efficiency is thus lost “by design” due to each change in L, even if the
management system is functioning perfectly.

In our simulations, we can compute this notion of efficiency, but in practical
situations, the theoretical quantity πbest is both unknown and unknowable. Ef-
ficiency thus cannot be computed directly, because there is no predictive model
of payoff, and thus no concept of best performance. One can, however, bound
efficiency by estimating best-case behavior and comparing that estimate to ob-
served behavior.

In bounding best-case behavior, the apparent chaos in our estimates Vest
of V actually helps. On average, the maximum payoff predicted by πest(R) =
V est(R) − C(R) is an upper bound for the theoretical maximum payoff π(R) =
V (R) − C(R), because statistically, some of the estimates of V est are accurate.
Thus, provided a large-enough sample of successive estimates πest

i (i = 1, . . . , n)
is considered, the maximum of the upper bounds of the set of estimates is an
upper bound on the best-case payoff in the middle of the window:

πbest
n/2 ≤ πbound = maxn

i=1(max(πest
i ))

where the inner max represents the maximum payoff predicted by one estimate
function πest

i , while the outer max represents the maximum over the set of esti-
mate functions.

Thus a more practical notion of efficiency is an “observed efficiency bound”,
defined as

Ebound = (Σiπ
observed
i )/(Σiπ

bound
i )

Since empirically πbound
i ≥ πbest

i , Ebound ≤ Etheoretical, so it is always a lower
bound.

10 Simulation Results

To characterize the behavior of this algorithm, we proceed via examples. We
simulated the algorithm using a custom simulator written in the R statistics
language[23]. In our simulation, the hidden theoretical model of performance is
P (R, L) = R/L, so that P represents frequency response with perfect scalability
of resources, e.g., for a web farm. L is a sine wave varying between (unitless)
loads with magnitudes 0.5 and 1.5, corresponding to frequency responses between
R/0.5 and R/1.5. We vary period (and thus frequency) between 100-800 time
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Fig. 3. The simplest management problem consists of one cost change and one value
change. In this example, the period of the load function is 500 and ∆R is 2. Theoretical
efficiency is 83%, while observed efficiency is 75%.

period ∆R = 1 ∆R = 2 ∆R = 3 ∆R = 4 ∆R = 5 ∆R = 6 ∆R = 7 ∆R = 8

100 33.6 34.5 28.9 29.3 45.6 50.7 49.7 43.3 82.6 65.1 73.2 59.6 77.2 61.8 78.5 62.9
200 30.8 34.6 81.9 69.0 74.6 61.6 76.6 62.2 82.6 71.6 86.0 73.2 86.3 74.8 91.3 79.6
300 66.8 77.7 71.9 61.4 81.5 70.5 85.7 73.9 89.5 80.1 92.2 83.0 93.1 83.4 93.8 85.1
400 67.0 75.2 79.9 70.9 86.4 76.8 92.8 83.9 90.6 82.1 95.0 87.1 95.1 87.1 95.3 88.6
500 68.7 60.9 83.1 75.6 90.8 82.2 94.0 85.8 93.8 86.1 95.3 89.1 96.0 89.6 95.9 90.3
600 74.6 64.0 85.1 75.7 93.2 85.1 95.1 88.1 93.2 87.5 95.8 90.4 96.9 91.4 96.3 90.9
700 77.3 71.0 90.8 82.2 95.0 87.3 95.8 89.9 93.9 89.6 96.3 91.4 97.1 92.2 96.6 92.1
800 79.9 73.9 92.6 84.7 94.6 87.7 96.1 90.5 93.8 89.5 96.4 92.3 97.1 93.0 96.8 92.7

Table 1. Performance of the two-constraint payoff model. The increment ∆R can be
tuned by comparing observed efficiencies of values. The boldface entry corresponds to
Figure 3. When observed efficiency is greater than theoretical efficiency, this is due to
lack of seemingly chaotic behavior.

steps per cycle, and ∆R between 1 and 8. This gives us an idea of the interaction
between changes in hidden variables and efficiency of the management system.

Inputs to the algorithm include step-functions that we will notate using char-
acteristic (χ[a,b)) notation, where the characteristic function χ[a,b) is defined by

χ[a,b)(X) =

{

0 if X 6∈ [a, b)
1 if X ∈ [a, b)

and [a, b) represents the half-open interval from the number a to the number b,
not including b.

Our first example is the simplest non-trivial management problem, consisting
of one cost transition and one value transition. The cost function is C(R) =
100χ[100,∞)(R) while the value function is V (P ) = 200χ[100,∞)(P ). One sample
run is shown in Figure 3, whose interpretation is identical to that of Figure 2.
Even in the simplest example, there is a relationship between rate of change of
the hidden variable L, and choice of increment ∆R. The relationship between
rate of change, choice of increment, and efficiency is shown in Table 1, and
demonstrates that one can tune ∆R to ∆L by experimentation.
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Fig. 4. A slightly more complex management problem with two cost constraints and
two value constraints. In this example, the period of the load function is 500 and ∆R

is 2. Theoretical efficiency is 74%, while observed efficiency is 65%.

period ∆R = 1 ∆R = 2 ∆R = 3 ∆R = 4 ∆R = 5 ∆R = 6 ∆R = 7 ∆R = 8

100 48.5 52.8 87.7 - 62.1 - 80.0 61.8 68.1 54.8 50.2 45.6 51.9 40.8 80.4 56.8
200 77.1 78.1 72.8 61.4 65.1 - 56.5 45.4 74.1 62.2 85.4 65.0 87.8 69.8 88.0 70.9
300 85.3 71.3 57.6 45.3 71.8 60.8 75.1 64.8 86.5 70.9 90.3 76.0 91.7 77.9 92.3 79.6
400 84.1 - 60.4 52.8 87.3 71.8 89.6 76.1 79.1 68.5 91.9 80.5 94.3 83.0 93.6 83.5
500 64.5 - 74.0 64.5 89.3 75.9 82.7 72.9 90.9 80.6 93.1 83.4 95.3 85.7 93.9 86.0
600 61.3 49.1 87.3 73.6 90.8 79.0 85.8 76.1 91.7 82.8 93.8 85.2 95.7 87.8 93.9 86.9
700 51.8 45.0 88.9 75.7 91.7 80.7 94.6 84.6 92.7 84.6 94.7 87.1 96.2 88.6 94.6 88.2
800 63.9 56.8 89.7 78.1 93.0 83.2 89.4 80.7 93.1 85.4 94.5 87.7 96.1 90.2 94.5 88.9

Table 2. Performance of the four-constraint payoff model. The boldface entry corre-
sponds to Figure 4. Observed efficiency is sometimes not commensurate with theoretical
efficiency due to periods of non-prediction; those observed efficiencies are omitted.

Our second example is a slightly less trivial management problem with two
levels for each of cost and value:

C(R) = 100χ[100,200)(R) + 300χ[200,∞)(R)
V (P ) = 100χ[200,400)(P ) + 175χ[400,∞)(P )

An example run is shown in Figure 4 and performance data comparing pe-
riods and increment values is shown in Table 2. Efficiencies are higher because
the travel time between desirable states is smaller, but sometimes, the predictor
does not predict a best value, due to rapid changes in R that lead to inappro-
priate predictions for V . If this happens for an extended period, the observed
efficiency cannot be compared with theoretical efficiency, because there is no
prediction of best-case behavior for the time when predictions are withheld. In
that case(which the algorithm detects), observed efficiencies are not comparable
with theoretical efficiencies and are thus omitted from the table.



11 Conclusions

We have demonstrated that order can arise from apparent chaos, with a bit
of help. Seemingly chaotic underlying approximations of the high-level state
diagram inform resource changes that are observably stable; apparent chaos
serves as an effective search aid in planning changes that lead to increased payoff.
One key to the emergence of order is that estimates of state are employed only
to choose the direction of resource change, while recommended changes serve
as experiments that – in turn – refine state estimates near the current resource
level. This feedback between experiment and recommendation leads to high-level
predictability even though low-level estimates remain unpredictable. At the same
time, the nature of the low-level estimates enumerates possibilities in a way that
allows estimation of a lower bound on overall efficiency. Because estimates are of
the payoff function, rather than the payoff value, global optimization is possible,
which was not possible in prior formulations.

Many open issues remain. The multi-dimensional case has yet to be studied,
though the approach here has promise by use of multi-dimensional linear-least
squares approximations of P (R) and V (R). Another basic issue is that while the
value of performance (V (P )) is rather well understood, most sites do not have
a clear idea of the cost (C(R)) of resources, without which a balance cannot be
reached. One possible avenue of study is to link this cost with power awareness.
Several design issues also require further study. There are many options for
implementing various kinds of policies in this setting, and the best options remain
unclear. For example, what is the best way to implement an “over-provisioning”
policy?

In the usual concept of autonomics, measuring is easy but modeling is hard.
We have constructed a situation in which the reverse is true: modeling is easy
but precisely computing efficiency is not possible, though it stays near optimum.
Our approach allows us to do without detailed modeling, with benefit in a large
number of practical situations.
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