Management Without (Detailed) Models

Alva L. Couch Mark Burgess Marc Chiarini

A critical juncture...

- Autonomic computing as conceptualized by many will work if:
 - There are more precise models.
 - We can compose control loops.
 - Humans will trust the result.
- Source: Grand Challenges of Autonomic Computing, HotAC 2008.

Not...!

- Models are already bloated, and some critical model information is unknowable.
- The composition problem as posed now is theoretically impossible to solve.
- Trust is based upon simple assurances.

Most autonomic control solutions

- Assume a closed world in which all influences are known.
- Work well in expected circumstances.
- React poorly to unforeseen situations.
- Example: "catastrophic" changes in physical hardware, co-location of services, client load.
- "Learned" data becomes useless, must "start over" in learning how system behaves.

In this talk, we...

- Design for an open world.
- Assume that behavioral models are inaccurate and/or incomplete.
- Mitigate inaccuracy of models via constraints on their inputs and cautious action.
- Exploit unknown variation to explore possibilities and bound behaviors.

A minimalist strategy

- Consider the absolute minimum of information required to control a resource.
- Simplify the control problem to a cost/value tradeoff.
- Study "highly adaptive" mechanisms that
 maximize reward = value cost

Overall system diagram

- Resources R: increasing R improves performance.
- Environmental factors X
 (e.g. service load, co location, etc).
- Performance P(R,X): throughput changes with resource availability and load.

Example: web service in a cloud

 X includes input load (e.g., requests/second)

- P is throughput.
- R is number of assigned servers.

Value and cost

- Value V(P): value of performance P.
- Cost C(R): cost of providing particular resources R.
- Objective function
 V(P(R,X))-C(R):
 net reward for
 service.

Prior paper: last week...!

- If P(R,X) is simply increasing in R and X, and
- V(P) and C(R) are simply increasing in R. and
- V(P)-C(R) is a convex function, and
- X changes are bounded by sufficiently small ΔX/Δt, then
- One can ignore X, estimate P(R), and maximize V(P(R))-C(R) by incremental hill climbing.
- Couch and Chiarini, "Dynamics of resource closure operators", *Proc. AIMS 2009*, Twente, The Netherlands.

Brief overview of AIMS paper

- G knows V(P), predicts changes in value ΔV/ΔR.
- Q knows C(R), computes $\Delta(V-C)/\Delta R$, chooses appropriate **sign** for increment ΔR .

A simulation of the method

- $\Delta(V-C)/\Delta R$ is seemingly random (left).
- V-C closely follows theoretical ideal (middle).
- Percent differences from ideal are small (right).

This is not machine learning

- Accuracy of the model for P(R) is not critical.
- Algorithm behavior improves when less history is used.

Model is not critical

- Top run approximates
 V as aR+b so that
 ΔV/ΔR≈a,
- Bottom run fits V to more accurate model a/R+b.
- Accuracy of G's estimator is **not critical**, because estimation errors from unseen changes in X dominate errors in the estimator!

History: 10,20,30 steps

- Solid curve is **simulated** behavior,
- Circles represent optimal behavior.
- Using more history magnifies prior errors.

Limitations

- Preceding only works if functions V, C, P are never constant on an interval.
- What if the functions V, C are step functions (as in a Service-Level Agreement (SLA))?

Back to this paper: step-function SLAs Environmental Factors X requests requests Gatekeeper Operator G Managed Service measures performance P responses responses V(R)**Behavioral Behavioral** Parameters R Parameters R Closure Q

- Distributed agent G knows V(P), R; predicts value V(R).
- Q knows C(R), maximizes V(R)-C(R) by incrementally changing R.
- V(R) and C(R) are step functions, i.e., tables of keys and values.

Estimating V-C

- Estimate R from P.
- Estimate V(R) from V(P).
- Subtract C(R).
- Levels V0, V1, V2,
 C0, C1 and cutoff R1
 do not change.
- R0, R2 change over time as X and P(R) change.

Level curve diagrams

- Horizontal lines represent (constant) cost cutoffs.
- Wavy lines represent (varying) theoretical value cutoffs.
- Best V-C only changes at times where a value cutoff crosses a cost cutoff.
- Regions between lines and between crossovers represent constant V-C.
- Shaded regions are areas of maximum V-C.

Estimating nearest-neighbor value cutoffs

- Estimate the **two steps** of V(R) around the current R.
- Fitted model for P(R) is **not critical**.
- V-C must be convex in R.

Estimating all value cutoffs

- Accuracy of P(R) estimate decreases with distance from current R value.
- Choice of model for P(R) is **critical**.
- V-C need not be convex in R.

In other words,

 One can make tradeoffs between convexity and accuracy!

How well does this do?

- In a realistic situation, we don't know optimum values for R.
- Must estimate ideal behavior.
- Method: exploit X variation.

Observed efficiency (a simplified description)

- Consider n time steps i=1,n.
 - Let N_i be the **observed** V_i - C_i at step i. Let $N = \sum N_i$
 - Let T_i be the **theoretical best** V_i - C_i at step i. Let $T = \sum T_i$
 - Let M_i be the maximum estimated V_i-C_i at step i.
 - Let $M = n \cdot max(M_i)$.
- Call N/T the efficiency of the process for n steps.
- Call N/M the observed efficiency of the process.
- Over a large enough sample n, where X varies, M≥T and N/M≤N/T.
- Thus observed efficiency N/M is a lower bound on efficiency.

How accurate is the estimate?

- Three-value simulation.
- Sinusoidal load.
- More details and results in paper.

IoadPeriod	optimum	observed	difference
100	0.800000	0.618421	0.181579
200	0.565310	0.453608	0.111702
300	0.751067	0.647853	0.103214
400	0.896478	0.760870	0.135609
500	0.826939	0.728775	0.098164
600	0.857651	0.760732	0.096919
700	0.946243	0.845524	0.100719
800	0.893867	0.807322	0.086545

Some caveats

- In some simulations, M could not be estimated.
 - Too many situations in which V could not be estimated.
 - Insufficient grounds for interpolating.
- In very rare cases, M is slightly > T.
 - Sample too small to predict maximum.
 - Not enough variation in input load.

In this talk, we...

- Designed for an open world.
- Assumed that behavioral models are inaccurate and/or incomplete.
- Mitigated inaccuracy of models via constraints on input and cautious action.
- Exploited unknown variation to explore possibilities.

But...

- This is an extreme case.
- Step functions are better handled by non-incremental means.
- There are many algorithms between the extremes of model-based and model-free control.
- We can model X and P(R,X) and still obtain these benefits...
- ... provided that we are willing to stop using models that become observably incorrect over time!
- More about this in the next installment (MACE 2009)!

Questions? Management Without (Detailed) Models

Alva L. Couch Mark Burgess Marc Chiarini