
On the Combined Behavior of Autonomous
Resource Management Agents

Siri Fagernes1 and Alva L. Couch2

1Faculty of Engineering
Oslo University College

Oslo, Norway
siri.fagernes@iu.hio.no

2Computer Science Department
Tufts University

Medford, MA, USA
couch@cs.tufts.edu

Abstract. A central issue in autonomic management is how to coor-
dinate several autonomic management processes, which is assumed to
require significant knowledge exchange. This study investigates whether
two autonomic control units, which control the same system, can achieve
some level of self-coordination with minimal knowledge exchange be-
tween them. We present the results from simulations on a model of two
autonomous resource controllers influencing the same system. Each of
the controllers tries to balance system utility with the cost of resource
usage, without the knowledge of the second controller. Simulations indi-
cate that coordination of autonomic management processes is possible,
as the system performs close to optimally with minimal knowledge ex-
change between the two resource controllers.

Key words: self-organization, resource management, autonomic com-
puting, agent management, distributed agents

1 Introduction

The vision of autonomic computing is to build systems that are capable of self-
management, adapting to changes by making their own decisions, based on status
information sensed by the systems themselves[1, 2]. Current solutions to auto-
nomic computing rely upon “control loops” in which the managed system is mon-
itored, changes are planned and implemented, and the effectiveness of changes
is evaluated [3]. For many authors, the definition of control loops as provided
in IBM’s autonomic computing manifesto[1] is equated with the definition of
autonomic computing.

However, there are some drawbacks to IBM’s control architecture. One draw-
back is that distinct control loops are difficult to combine into a coherent man-
agement strategy. Another drawback is that the effectiveness of a single control
loop depends upon the accuracy of its model of system behavior during the



2 S. Fagernes, A. L. Couch

planning phase[4]. Vendors deal with these two drawbacks by constructing auto-
nomic controllers that gather and act upon global knowledge of system behavior.
This knowledge is exchanged with other controllers via what might be called a
“knowledge plane” [5, 6]. As a result, vendors pursue large monolithic approaches
to autonomic control, in which an overarching controller gathers and acts upon
data concerning all aspects of performance. The net result of this approach is
that it is not practical for two non-communicating control approaches to collab-
orate or even co-exist.

In this paper, we study an alternative approach to autonomic control that
is designed to foster collaboration between controllers and minimize necessary
knowledge between them. In an initial AIMS paper last year [7], Couch demon-
strated that an autonomic controller could achieve near-optimal behavior with
an incomplete model of system behavior. Couch claimed that this model of con-
trol will allow controllers to be composed with minimal knowledge exchange.
In this paper, we test that claim, by simulating the results of composing two
controllers for front-end and back-end services under a variety of conditions. We
demonstrate that composition is possible, and that reasonable results can be
achieved from two controllers, provided that each controller is aware of when
the other is operating.

The remainder of this paper is organized as follows. Section 2 gives a brief
overview of related works. In section 3, we introduce the extended theoretical
model which forms the basis of the simulations in the experiments, which are
described in section 4. Section 5 gives an overview of our observations and results,
which we discuss in section 6.

2 Related Work

There is a wealth of literature on the control-theoretic approach to autonomic
management. Traditional approaches to resource control rely upon control theory
to predict system response in the presence of changes[8]. These authors use
the system model to predict overall response. Therefore, the usefulness of the
technique varies with the accuracy of available models.

Another technique for gaining optimal control of application resources in-
volves using optimized sampling strategies to compensate for lag times from un-
restrained sampling[9]. Rather than controlling a short-term sampling window,
these authors sample based upon experimental design principles and a concept
of which samples are more “important” than others.

Other alternatives that do not rely on control theory are still dependent on
constructing accurate models[10]. In these studies, an optimizer uses a model
to predict the relationship between resources and behavior, and plans without
control-theoretic assistance.



On the Behavior of Autonomous Resource Management Agents 3

3 Model

As a sample case for our composition problem we have used a system consisting
of a back-end server and a front-end server which –when combined –provides a
service. The performance of the system is determined by the total response time
P incurred in providing the service. The response time consists of two main
parts:

– P1: the response time at the front-end server.
– P2: the response time at the back-end.

The response time will be influenced by several factors, but in this study we
will isolate two such variables in the resource domain, so that R1 is a adjustable
resource variable on the front-end server, and R2 on the back-end.

For the purposes of this paper, in like manner to Couch’s simulations[7], we
assume ideal scalability, so that P1 = L1

R1
and P2 = L2

R2
. The total response time

or performance P is then expressed by

P =
L1

R1
+
L2

R2
, (1)

where L1 and L2 is the current load at each of the servers. An illustration of the
scenario is shown in Figure 1.

Client Front end Back end

P1+P2 P2

Client

Front end

Back end

Time

P2

P1+P2

Fig. 1. The total system response time. Transmission time is ignored.

The associated cost S of providing the service is the sum of the costs of the
current resource usage, which is defined as

C(R1, R2) = C(R1) + C(R2) = R1 +R2. (2)



4 S. Fagernes, A. L. Couch

The associated value of receiving the service, which is given notation V (P )
is defined (in like manner to Couch’s initial paper) according to the following
expression:

V (P ) = 200− P = 200− L1

R1
+
L2

R2
(3)

illustrating how the perceived value decreases with increasing response time, and
increases with increases in R1 and/or R2. This cost function is chosen so that
the overall reward function V (P )−C(R1, R2) has a theoretical optimum value.

3.1 Feedback and control loops

The core of this study is to analyze how the closure operators control/adjust
their individual resource parameters. Both operators receive feedback on the
perceived value V of the delivered service S, and based on local knowledge of
the cost of the current resource usage, each operator can make its local estimate
of the derivative dV

dR . The dynamics of the model is simple; if dV
dR is positive it

will be beneficial to increase R, and if it is negative the resource usage should
be decreased.

An obstacle lies in the fact that the change in value dV is a result of recent
changes in both R1 and R2. It is challenging to estimate dV

dR1
and dV

dR1
correctly,

since the operators controlling R1 and R2 do not know about each other’s pres-
ence.

3.2 Theoretical Optimum and False Optimum

The choice of this model makes calculating the theoretical optimum of the oper-
ators’ choices both simple and straightforward. The goal of the system manage-
ment is to balance cost and value, i.e. to maximize the net value (value minus
cost). This is equivalent to maximizing

V (P )− C(R1)− C(R2) = 200− L

R1
− L

R2
−R1 −R2, (4)

which trivially gives the following values for optimal choice of R1 and R2

ROpt
1 = ROpt

2 =
√

(L), (5)

where L represents the common load L = L1 = L2.
Based on the fact that these two operators do not know about each other, it

is reasonable to expect them to make a wrong estimate of the optimal choice of
resource usage. Each operator receives feedback of the overall value in the system,
but does not take into consideration the cost of the other resource variable.

In a scenario where the resource operators work concurrently with equal
resource values R, the perceived net value function would look like this:

V (R)− C(R) = 200− 2L
R
−R (6)



On the Behavior of Autonomous Resource Management Agents 5

which gives the optimal value Rfalse =
√

2L, which we refer to as the false
optimum in the remainder of this paper, because some management designs
achieve this optimum instead of the true optimum.

4 Experiment

We implemented a simulator based on the two-operator model, with the aim of
simulating how the system behaves, and of determining whether the independent
resource controllers are able to adjust the resource level to a level that is close
to the optimal values. The system was tested for two different types of load L:

– Constant load, where L = 1500.
– Sinusoidal load, where L(t) = 1000sin((t/p) ∗ 2π) + 2000, which makes the

load varying periodically between 1000 and 3000.

We developed and tested two methods for updating the resource variable.
Under our first method, both controllers receive system feedback and simultane-
ously update their resource variable. We designate this method as the concurrent
algorithm in the remainder of the paper.

Under the second approach, each controller adjusts its variable while the
other remains constant through a specific number of iterations (cycles). During
each cycle, one update of the system performance is fed back to the resource
controllers. In this approach, which we designate as the alternating algorithm,
each controller tries to converge to its optimal resource usage level, without
interference of the other controller’s updates.

5 Results

This section presents and explains the main findings from the simulations. The
metrics for evaluating model performance are

1. The actual net value produced by the system throughout each simulation,
compared with the theoretically highest value.

2. The actual resource usage (actual values of R1 and R2) compared with the
theoretical optimal value for R1 and R2.

The simulator was run for a range of values of R1 and R2, but due to space lim-
itations only a small selection is presented here. However, the presented findings
occurred for all tested values.

True and false optima

As computed earlier in this paper, the theoretically optimal behavior of both
resource controllers is a resource level of R1 = R2 =

√
L. In other words, a

desirable result would be to have both variables R1 and R2 converge to
√
L.

The plots we computed of the actual behavior of R1 and R2 all indicate some
kind of convergence, but this convergence does not necessarily come to the true
optimum behavior.



6 S. Fagernes, A. L. Couch

Concurrency leads to false optima

Throughout the simulation results, concurrent updates of the resource variables
R1 and R2 by both controllers acting independently resulted in convergence
to false optima for at least one of the variables. The value of the false optima
depended on the initial resource variables.

If the initial values of R1 and R2 were identical, both variables appeared to
converge to the same false optimum

√
2L as seen in Figure 2.

200 220 240 260 280 300

30
40

50
60

70

Concurrent updates

Time

Re
so

ur
ce

 us
ag

e

200 220 240 260 280 300

0
10

20
30

40
50

60

Concurrent updates

Time

Ne
t v

alu
e

Fig. 2. Actual resource usage (left) and net value (right), under constant load. Initial
resource values: R1 = R2 = 50. In the left figure, the dashed straight line represents
the false optimum

√
2L while the lower solid line represents the actual optimum level√

L. Net value (right) is compared to the theoretical maximum net value (represented
by the upper straight line).

However, R1 and R2 have different initial values, the lowest one ends up
“dominating” by converging close to the optimal value (

√
(L)). The other gets

“stuck ”at a higher level, and sometimes even increases from its initial level. For
initial values far from the optimal this trend wreaks a devastating impact on the
efficiency of the system (Figure 3).

Concurrent, uncoordinated resource adjustments result in poor performance
based on achieved net value, particularly when there is a difference in initial
values of R1 and R2. If the difference between these is above a certain threshold,
the system produces negative net value (Figure 4).

Alternating between processes leads to true optima and thrashing

Our next approach was to alternate the two processes. We constrained one of
them from acting while the other adjusted its resource parameter. As illustrated



On the Behavior of Autonomous Resource Management Agents 7

200 220 240 260 280 300

30
40

50
60

70
80

90
10

0

Concurrent updates

Time

Re
so

ur
ce

 us
ag

e

200 220 240 260 280 300

0
10

20
30

40
50

60

Concurrent updates

Time

Ne
t v

alu
e

Fig. 3. Actual resource usage (left) and net value (right), under constant load. Initial
resource values: R1 = 1, R2 = 50. In the left figure, the lower oscillating curve represents
the resource variable R1, while the upper represents R2. The straight line in the left
figure represents the actual optimum level

√
L. In the right figure, the straight line

represents the theoretical maximum net value.

200 220 240 260 280 300

−
4

0
−

2
0

0
2

0
4

0

Concurrent

Time

N
e

t 
va

lu
e

200 220 240 260 280 300

−
4

0
−

2
0

0
2

0
4

0

Alt(1 cycle)

Time

N
e

t 
va

lu
e

200 220 240 260 280 300

−
4

0
−

2
0

0
2

0
4

0

Alt(10 cycles)

Time

N
e

t 
va

lu
e

Fig. 4. Achieved net system value, constant load. Initial resource values: R1 = 1, R2 =
100.



8 S. Fagernes, A. L. Couch

in Figure 5, the apparent effect is that the resource values chosen by both pro-
cesses now oscillates around the theoretical optimum Ropt. In our view, this
algorithm has managed to “escape” the false optimum. The downside is that the
oscillations are “larger”, which leads to worse performance with respect to total
net value, as illustrated in Figure 6.

200 220 240 260 280 300

20
30

40
50

60

Concurrent

Time

Re
so

ur
ce

200 220 240 260 280 300

20
30

40
50

60

Alt(1 cycle)

Time

Re
so

ur
ce

Fig. 5. Actual resource usage, constant load. Initial resource values: R1 = R2 = 50.

Another feature of this experiment, is that the system seems to be less vulner-
able to choices for initial values of R1 and R2, compared to when the processes
are run concurrently (Figure 4).

The best-case situation.

The next approach was then to increase the time that each process was able
to adjust while the other was kept constant. The idea was to let each process
converge to its optimal value without interference from the other variable.

We have run the algorithms for varying measurement window and number
of cycles. As seen in Figure 7, by keeping each resource variable constant for 10
cycles, the resulting net value has improved significantly (compared to the “1
cycle”-case).

However, increasing the number of cycles beyond 10 does not seem to improve
things, as the net value is actually lower for cycles=25 and 50.

Keeping the number of cycles at 10 (which seemed to give the best results
in some of the experiments), and varying the measurement window size for the
input data, showed that increasing the window generates more chaotic behavior
and worse performance with respect to achieved net value, as seen in Figure 8.

However, the pattern of less efficient management when the number of cycles
increased, proved not to be consistent throughout the simulations, as seen in



On the Behavior of Autonomous Resource Management Agents 9

200 220 240 260 280 300

20
25

30
35

40
45

50

Concurrent

Time

Ne
t v

alu
e

200 220 240 260 280 300

20
25

30
35

40
45

50

Alt(1 cycle)

Time

Ne
t v

alu
e

Fig. 6. Achieved net system value, constant load. Initial resource values: R1 = R2 = 50.

200 220 240 260 280 300

25
30

35
40

45

Alt(1 cycle)

Time

N
et

 v
al

ue

200 220 240 260 280 300

25
30

35
40

45

Alt(10 cycles)

Time

N
et

 v
al

ue

200 220 240 260 280 300

25
30

35
40

45

Alt(25 cycles)

Time

N
et

 v
al

ue

200 220 240 260 280 300

25
30

35
40

45

Alt(50 cycles)

Time

N
et

 v
al

ue

Fig. 7. Achieved net system value, constant load. Initial resource values: R1 = R2 = 50.



10 S. Fagernes, A. L. Couch

200 220 240 260 280 300

25
30

35
40

45

win=3

Time

Ne
t v

alu
e

200 220 240 260 280 300
25

30
35

40
45

win=6

Time

Ne
t v

alu
e

200 220 240 260 280 300

25
30

35
40

45

win=12

Time

Ne
t v

alu
e

Fig. 8. Achieved net system value, constant load. Initial resource values: R1 = R2 = 50.
Alternating for 10 cycles.

Table 1. Here we have systematically computed the theoretical efficiency as in-
troduced in [7]. Theoretical efficiency was defined as the ratio of sums of achieved
net value to the theoretically best:

E =
∑

i(Vi − Ci)∑
i(V

opt
i − Copt

i )
(7)

where V opt
i − Copt

i is the best theoretical net value the system can produce at
time i. As seen in Table 1, keeping each variable constant for 10-75 cycles give
significantly higher efficiency than just keeping them constant for one cycle (e.g.
the values in column Alt(1) are much lower). However, the number of cycles that
are optimal varies according to the choice of initial values of R1 and R2.

Win=3 Conc Alt (1) Alt(10) Alt (25) Alt(50) Alt (75) Alt (200)

R1=R2=1 0.815 0.934 0.977 0.993 0.988 0.993 0.911
R1=R2=50 0.794 0.911 0.995 0.987 0.986 0.986 0.990

R1=1, R2=50 0.335 0.936 0.995 0.993 0.988 0.990 0.909
R1=1, R2=100 -0.643 0.934 0.988 0.987 0.991 0.989 0.914

R1=R2=100 0.815 0.934 0.987 0.987 0.993 0.993 0.979

Table 1. Theoretical efficiencies (constant load).

Increasing the measurement window size from 3 seems to have undesirable
effects, as seen in Figure 9, which is consistent with Couch’s claim that more
data sometimes hurts performance [7, 11, 12].



On the Behavior of Autonomous Resource Management Agents 11

The results discussed here were obtained while running the simulator un-
der constant load. We also ran the simulator under sinusoidal load, to confirm
that the algorithms still retain convergence effects as reported by Couch[7]. One
example is shown in Figure 9.

0 100 200 300 400

−4
0

−2
0

0
20

40
60

Concurrent

Time

Ne
t v

alu
e

0 100 200 300 400

−4
0

−2
0

0
20

40
60

Alt(1 cycle)

Time

Ne
t v

alu
e

0 100 200 300 400

−4
0

−2
0

0
20

40
60

Alt(10 cycles)

Time
Ne

t v
alu

e

Fig. 9. Achieved net system value, sinusoidal load. Initial resource values: R1 = R2 =
50.

6 Conclusion

In this paper, our goal was to understand the mechanisms that are required
in order to achieve self-organization of independent autonomic components or
processes.

The findings indicate that controllers can collaborate effectively when they
are constrained under a simple process of taking turns, and without requiring
any other information exchange. This finding challenges the popular belief that
a knowledge plane and a concept of global knowledge are necessary to allow
multiple processes to co-exist.

For this kind of self-organization to be possible, our experiments indicate that
it is sufficient that the autonomic entities adjust their behavior at different times,
i.e. completely concurrent execution of controllers behavior is not sufficient for
the system as a whole to achieve its goals. An algorithm that lets each entity
affect the common environment or system (and receive system feedback) for
several iterations without the interference of other components seems to help
the components to achieve close-to-optimal behavior.

We found that while the time window in which each resource controller op-
erates alone must be of some size, the measurement window is constrained to
be quite small. This corresponds well with earlier results [7, 11] which concluded



12 S. Fagernes, A. L. Couch

that high reactivity can be more efficient than requiring large numbers of mea-
surements.

At the outset, we challenged the idea that management agents must be tightly
coupled to coordinate their actions. Our initial hypothesis was that this coupling
could be much less than is present in other proposed and actual agents. This
study showed that the minimal level of coupling needed was temporal coor-
dination, which is much less than the total knowledge exchange proposed in
competing solutions.

References

1. J.O.Kephart and D.M.Chess. The vision of autonomic computing. IEEE Com-
puter, 2003.

2. M. C. Huebscher and J. A. McCann. A survey of autonomic computing - degrees,
models, and applications. ACM Comput. Surv., 2008.

3. J.L. Hellerstein, Y. Diao, S. Parekh, and D.M. Tilbury. Feedback Control of Com-
puting Systems. John Wiley & Sons, 2004.

4. J.O.Kephart. Research challenges of autonomic computing. Proceedings of the 27th
international conference on Software engineering., 2005.

5. D. F. Macedo, A. L. dos Santos, J. M. S. Nogueira, and G. Pujolle. A knowledge
plane for autonomic context-aware wireless mobile ad hoc networks. Management
of Converged Multimedia Networks and Services (LNCS), 2008.

6. M. Mbaye and F. Krief. A collaborative knowledge plane for autonomic networks.
Autonomic Communication, 2009.

7. A. Couch and M. Chiarini. Dynamics of resource closure operators. Proceedings of
Autonomous Infrastructure Management and Security 2009, Twente, The Nether-
lands, June 30-July 2, 2009, 2009.

8. P. Padala, K. G. Shin, X. Zhu, M. Uysal, S. Singhal Z. Wang, A. Merchant, and
K. Salem. Adaptive control of virtualized resources in utility computing environ-
ments. EuroSys, 2007.

9. B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang. A smart hill-climbing
algorithm for application server configuration. WWW, pages 287–296, 2004.

10. P. Padala, K.-Y. Hou, K. G. Shin, M. Uysal, S. Singhal Z. Wang, and A. Merchant.
Automated control of multiple virtualized resources. EuroSys, pages 13–26, 2009.

11. A. Couch and M. Chiarini. Combining learned and highly-reactive management.
Proceedings of Managing Autonomomic Communications Environments (MACE)
2009, Venice, Italy, Oct 27, 2009., 2009.

12. A. Couch, M. Burgess, and M. Chiarini. Management without (detailed) models.
Proceedings of Autonomic and Trusted Computing 2009, Brisbane, Australia, July
7-9, 2009., 2009.


