On the Combined Behaviour of Autonomous Resource Management Agents

Siri Fagernes and Alva L. Couch

June 24, 2010

2

The Vision of Autonomic Computing (AC)

Systems that are capable of

- self-management,
- adapting to changes by making their own decisions,
- based on status information sensed by the system itself.

イロト イポト イヨト イヨト

Common Approach in AC

- Autonomic control loops,
- that operates to achieve defined system goals
- based on predicted models of system behaviour.

イロン イボン イヨン

The Question of Knowledge

• Precise models of system behaviour require huge amounts of information.

ヘロト ヘアト ヘビト ヘビト

- As dynamic behaviour and size of the systems increase, the **complexity** of information becomes overwhelming.
- Some of this information may not even be **knowable**.

Requiring less information for system management is beneficial!

- Minimal information can lead to **near-optimal** behaviour through use of **highly-reactive** management agents.
- Highly reactive agents can be **composed** without chaotic interactions.

ヘロト ヘアト ヘビト ヘビト

Resource Management using Autonomic Operators

∃ 990

イロト イポト イヨト イヨト

Exploring Resource Management Agents

- In 2009, prof. Alva Couch (Tufts University) proposed a theoretical model of autonomic resource management.
- The model does not require complete information of system behaviour, and still it is able to perform at near optimal levels.
- A high level of reactivity seems to compensate for lack of detailed knowledge.

ヘロト ヘ回ト ヘヨト ヘヨト

This paper: can the agents be **composed** without chaotic interactions?

The Resource Management Model

 A system delivers a service with response time (performance) P

・ 同 ト ・ ヨ ト ・ ヨ ト

- Use of resources **R** with a cost **C**
- The service has a perceived value V
- System goal: balance cost and value

Basic Model

- One control loop affects the resource domain
- Influenced by unknown parameters that are built into the model

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Load L
- External influences X "unknowable"

Basic Model - Dynamics

- The component in charge of controlling the resource usage receive feedback of the perceived **value** of the delivered service.
- Value feedback is used by the component to estimate whether it is beneficial to reduce or increase the resource usage.

・ 同 ト ・ ヨ ト ・ ヨ ト

Basic Model - Variables

- Performance P(R, L) = $\frac{L}{R}$
- Cost C(R) = R
- Value V(P) = 200-P

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Results: measured net value

イロト 不得 トイヨト イヨト

æ

Green=optimum, black=actual

The Composition Problem

- How can we use several different control loops,
- That operate upon and influence the same system,

イロン イボン イヨン イヨン

At the same time?

Model and Simulations

Siri Fagernes and Alva L. Couch

We Extended the Original Model

System performance depend on two resource variables R_1 and R_2 :

$$P=rac{L}{R_1}+rac{L}{R_2}$$

イロト イポト イヨト イヨト

Scenario: Front-end + Back-end

The total system response time depends on two processes. Transmission time is ignored.

イロン イボン イヨン イヨン

• the variables should be updated without centralised coordination or (complete) coordinated knowledge

イロン イボン イヨン イヨン

Performance and Value

Value function (for the overall system):

$$V = 200 - P = 200 - \frac{L}{R_1} - \frac{L}{R_2}$$

イロン イボン イヨン イヨン

Choice of Algorithm

How should the variables R1 and R2 be updated?

- oncurrently?
- taking turns?

イロン イボン イヨン イヨン

Results

Siri Fagernes and Alva L. Couch

Concurrency Leads to False Optima

イロト イポト イヨト イヨト

Initial resource values: $R_1 = R_2 = 50$.

Concurrency Leads to False Optima (II)

프 > 프

э.

Initial resource values: $R_1 = 1, R_2 = 50$.

'False Optimum'-Explanation

- Each of the variables get updated based on feedback of the global system's **overall** performance *P*.
- P depends on both R1 and R2.
- An estimate from R1 would not incorporate the cost of R2.
- Consequence: their individual estimate of the optimum is **wrong**.

イロト イポト イヨト イヨト 一座

Estimating the 'False Optimum'

- Each operator receives feedback of value $V = 200 \frac{L}{R_1} \frac{L}{R_2}$.
- Their individual estimate of total cost is *C*(*R*1) (or *C*(*R*2))
- In the special case where R1=R2=R, this could be represented by the following system (as seen from one of them):

•
$$V(R) = 200 - \frac{2L}{R}$$

•
$$C(R) = R$$

which means that the net value function is $200 - \frac{2L}{R} - R$, which has the optimal value $R = \sqrt{(2L)}$.

イロト イポト イヨト イヨト 一座

Alternating Between Processes Lead to True Optima and Thrashing

A D > A B >

э

Initial resource values: $R_1 = R_2 = 50$.

Alternating Between Processes Lead to True Optima and Thrashing (II)

3

Initial resource values: $R_1 = R_2 = 50$.

The Best-Case Situation

<ロ> (四) (四) (三) (三) (三)

The Best-Case Situation (II)

Initial resource values: $R_1 = R_2 = 50$. Alternating for 10 cycles.

▶ < Ξ >

Varying (Sinusoidal) Load

<ロ> (四) (四) (三) (三) (三)

Achieved net system value, sinusoidal load.

Observations

When resource variables are updated **concurrently**:

- If there is a significant difference in their initial values, the lowest value ends up **dominating**, while the highest value never converges to the optimal value.
- When both initial values are equal, both variables converge to the **false optimum** (which would be the optimal value if only one variable and the same system outcome as reported).

ヘロト ヘアト ヘビト ヘビト

When resource variables are updated only one at a time:

• For all scenarios listed on the previous slide, both variables seem to converge to values in an interval between the optimum and the false optimum.

ヘロト ヘアト ヘビト ヘビト

• Not affected by differences in initial values (important!)

- We have developed a model based on autonomic resource management agents.
- The current model requires very little exchange of information among the agents, and is still able to perform well when certain constraints are fulfilled.

ヘロト ヘアト ヘビト ヘビト

Conclusions

- Concurrent updates of the variables leads to false optima.
- Alternating updates (with small increments) makes the variables oscillate around the actual optimum levels.
- **Oscillations** can be reduced by tuning certain parameters (small resource increments and short measurement windows).
- Updating the resource variables at **different times** (and hence makes them able to 'observe' each others' influence on the system) is important for robustness of the model.

ヘロト ヘ回ト ヘヨト ヘヨト

Contact Information

- Siri Fagernes (siri.fagernes@iu.hio.no)
- Alva Couch (couch@cs.tufts.edu)

イロン イボン イヨン