
Dynamics of Resource Closure Operators

Alva L. Couch and Marc Chiarini

Tufts University, Medford, Massachusetts, USA
couch@cs.tufts.edu, marc.chiarini@tufts.edu

Abstract. We propose a framework for managing resources via conver-
gent operators. Operators represent their need for a resource to a desig-
nated resource closure operator that manages the resource. We evaluate a
specific design for a resource closure operator by simulation and demon-
strate that the operator achieves a near-optimal balance between cost
and value without using any model of the relationship between resources
and behavior. Instead, the resource operator relies upon its control of the
resource to perform experiments and react to their results. These experi-
ments allow the operator to be highly adaptive to change and unexpected
contingencies.

1 Introduction

A convergent operator[1, 2] is a process that acts upon a network to achieve a
management objective. Each operator has several properties, including:

1. awareness (or “knowledge”): The operator has a mechanism by which it can
determine if its goals have been achieved.

2. idempotence (or “convergence”): If its goals have been achieved and they
remain so, the operator effects no changes in the network.

Each operator functions like an independent autonomic control loop: performing
monitoring, planning, and system changes at every invocation. The function of
a control loop is achieved by repeating one operator over time, either at regular
time intervals or by chance[3]. Convergent operators are applied periodically to
“immunize” a system against performance degradation[2, 1, 4]. This basic phi-
losophy is exemplified by the CfEngine system for configuration management[5,
6]. Prior work shows that autonomic computing can be “approximated” by a
collection of convergent operators applied repeatedly at random[7]. Our oper-
ator model is motivated by the “maintenance theorem” of Burgess[3], which
demonstrates that autonomous entities can converge to an emergent fixed-point
without coordination or coercion.

In this paper, we show that Burgess’ maintenance theorem can be applied to
resource management, by defining appropriate operators and studying their be-
havior. This work is a continuation of our prior work on convergent operators[8].
Two convergent operators are consistent with one another if probabilistic, re-
peated application of both of them leads to a network state that achieves both
of their management objectives simultaneously, and inconsistent otherwise. We

demonstrated that consistency is best viewed as a dynamic, emergent property
of an operator system, rather than something that can be analyzed statically.
We also introduced the idea of a closure operator that acts on a system within
well-defined limits and is self-healing only within a very narrowly defined do-
main of responsibility[9]. A closure is a self-managing part of an otherwise open
system[10–12]. It is called a closure partly because it acts something like a clo-
sure in a programming language: it is an island of determinism in a perhaps
unpredictable overall system. In this paper, we discuss the design of a specific
closure operator for resource management.

This paper is motivated by current challenges to autonomic control models
of system management. At Hot Autonomic Computing 2008 (HotAC08), one of
the grand challenge problems discussed was that of composing several autonomic
control loops with perhaps different objectives[13]. It was accepted that without
further constraints, two control loops controlling the same behavioral domain
cannot be used at the same time with predictable effects. Thus, a definition of the
concept of loop composition remains unclear. Another grand challenge problem
was to determine complete and accurate models of server performance. Without
these models, traditional control theory (as presented in [14]) is significantly
hampered in guaranteeing acceptable response.

Our research responds to these challenges with a new model of resource man-
agement that utilizes closures with partial information to replace closed loops
with complete information. We describe the design of a closure operator that
manages a one-dimensional resource parameter and balances demand (value)
against available resources (cost). We demonstrate that an efficient balance be-
tween cost and value can be achieved without modeling system dynamics, even
in cases where demand functions change suddenly. The result is a highly adaptive
management strategy that utilizes minimal information about the environment
to maximize its objective function.

The organization of this paper is as follows. We begin by introducing a scalar-
value resource-management problem and our architecture and assumptions. We
then define our algorithm and demonstrate its properties via simulation. Finally,
we discuss limitations and directions for future work.

2 A Scalar-Value Management Problem

Our control model is depicted in Figure 1. A system to be managed outputs
one value: a performance measure P . It is managed by controlling a resource

parameter R, which is assumed to (perhaps indirectly) determine P , though there
are other determining factors for P , including system load X (which is known
to exist but is not considered in our model). P might represent response time,
mean time in system, etc., while R might represent memory, server instances,
etc. In this study, the goal of management is to control R so that the value of
P balances with the cost of R.

This control model is motivated by concerns that arise in the context of
Business-Driven Information Technology (BDIM)[15, 16]. To truly optimize an

?

�

-
�

6

managed system

Resources R

closure Q

Cost C(R)

operator O

Value V (P)

Performance P

P, R

R

∆V/∆R

∆R

Load X

Fig. 1. Operator interaction occurs through a resource closure.

enterprise, it is not enough to maximize delivered value; one must also balance
cost and value. Thus our objective function is V − C, the difference between
value V and cost C. We aim to maximize V − C based upon constraints on
resources R.

In our model, R is controlled via an intermediary resource closure operator

Q that accepts recommendations from (distributed) operators O and then rec-
ommends changes to be made in R. Each recommendation is a quantity ∆V/∆R
that represents the local rate of change in value to the operator in question. Q
computes the sum of value estimates from each source to get an overall ∆V/∆R
representing the total potential gain from increasing R. The closure then com-
bines this with a local concept of the cost C(R) of the resource to compute a
net reward difference ∆(V −C)/∆R. If this difference is positive, Q recommends
a positive increment ∆R in resources, while if it is negative, a negative ∆R is
recommended instead. Q decides upon the magnitude of ∆R independently of
the value of ∆(V − C)/∆R. For this paper, that magnitude is a constant value
that differs only in sign over time.

While cost is a function of available resources (C = C(R)), value is a function
of performance (V = V (P)). We think of P as average response time to queries.
P has an “open” and unknown relationship with R. It is not a simple function of
R, but rather, depends upon other unknowns (including, e.g., an unknown load
X). We might notate P as P (R, X) where X is some unknown vector of load
attributes. Our model does not consider these influences: each operator models
value inaccurately as a function of P alone. Inaccuracies in the model of P are
mitigated via agility in both error detection and correction. This is exactly the
approach advocated by Burgess[3].

Our model makes a bare minimum of assumptions. It assumes that P (R, X) is
simply decreasing in R for constant X , that is, P (R + ∆R, X) < P (R, X) when
∆R > 0. In other words, more resources improve performance (by decreasing
response time). If R can take real values, this implies that P is continuous in R,
but R often assumes only a discrete set of numeric values (e.g., integers).

Other than this the model makes no general assumptions about the time-
varying behavior of P . It does not assume that P changes predictably in response
to changes in X , or even that P remains the same function between time t and
time t + 1. It might remain the same or it might change.1

We have left behind the assumptions of classical control theory. Most ap-
plications of control theory require knowledge of P (R, X) itself, and we do not
presume such knowledge, because there may be other active management pro-
cesses that modify the system and thus influence X (and P). We only control
one factor influencing P , which is R. We sidestep knowledge of X and replace
that knowledge with controlled experimentation in real time. Our overall model
embodies an open world assumption, while most control theory operates in a
closed world in which all influences on a system are known in advance.

2.1 Composition

Using our model, composing value estimates from multiple operators is straight-
forward and trivial, while composing typical autonomic control-loops is consid-
ered difficult or perhaps impossible, because of lack of ability to predict inter-
actions between the loops. We have not simplified the problem; our model only
moves the difficulty to a different place. The model describes a complex dy-

namical system with seemingly unpredictable behavior. While composition of
multiple management loops is made easy by the architecture, “understanding”
such a system is made more difficult by its nature. The precise behavior of our
systems cannot be predicted, and approximate bounds on behavior must suffice
as aids to understanding.

2.2 Observability

The assumptions we have made so far seem straightforward but have profound
effects. The fact that the performance function can change without notice (e.g.,
by replacing the whole machine that performs the service) means that informa-
tion collected far in the past may well describe a different P from the present
one. To reasonably assure that we are estimating “the current P”, only recent
information can be safely used, and even that can be incorrect if P has just
changed.

Although there is no rule against operators collecting information over long
time periods, this information need not be useful under our assumptions. Thus
we limit the operators O and Q to using estimates for P and R from the last few

1 The effectiveness of our operators requires that it does not change very often, but
frequency of change is not required to be limited in order to apply the strategies.

time steps only (e.g., ten previous operator invocations). While there is clear
value in doing so, we do not attempt to detect whether X or the function P
itself has changed. The simulations presented below demonstrate that we do not
need to detect such changes in order to obtain useful results. In fact, we must
limit our observation window to decrease the time in which the model responds
to dramatic changes in P .

2.3 Estimating ∆V/∆R

The convergent operators O provide some estimate of ∆V/∆R by fitting recent
measurements of V (P) to recent measurements of R via a linear model with least-
squares fit. The slope of the R coefficient in this model serves as an estimate
of ∆V/∆R. Each operator has one tunable parameter, which is the amount of
history it utilizes in estimating ∆V/∆R. If this amount of history is small, it
reacts quickly, while large amounts of history make response to sudden changes
more gradual, and serve as a kind of noise filter.

This kind of sampling is very different from – and perhaps even contrary
to – the kind of sampling currently done in Cfengine. Cfengine attempts to
smooth out errors in measurement via moving averages. By contrast, we utilize
un-smoothed measurements and expect inaccuracies and noise. The reason our
strategy still works is that we filter the results in a different way, inside the
resource closure Q.

Note that this is not a trial-and-error approach, nor do we advocate that
approach. Our experiments indicate that the validity of this approach depends
very much on how Q reacts to information from O. It is best to think of Q as
performing controlled experiments. Each change in R is an experiment whose
results are available during the next application cycle. Q’s goal in this exper-
imentation is to move R nearer to an optimum value, on the assumption that
the estimates of ∆(V − C)/∆R become more accurate as the optimum value is
approached. If one violates this pattern, the algorithm becomes divergent and of
no practical use. We performed many experiments in which Q failed to condition
its data sufficiently to allow managing R.

2.4 The Resource Closure

The resource closure Q sums the various ∆V/∆R estimates it receives to get
a total estimate. It then subtracts its own estimate of ∆C/∆R to get a total
estimate of ∆(V −C)/∆R. This is the hypothetical gain in the objective function
V − C for unit change in R. If this is positive, the closure increases R by some
∆R, while if it is negative, it decreases R by some ∆R. The magnitude |∆R|
of the increment is the closure’s only tunable parameter. If |∆R| is too small,
then convergence speed is too slow and the system undershoots behavioral goals,
while if it is too large, then it overshoots goals and oscillates around the optimum
value while never reaching it.

2.5 Perturbations And Seeding

The operators as defined above need data in order to function, creating a
“chicken-and-egg’ problem if the system is initially stable. If R is initially held
constant, then there will never be enough data to estimate any ∆V/∆R, because
this requires that R is changing. To solve this problem, the parameter closure
Q “seeds” the incoming data for the operators by incrementing the values of
R by a fixed ∆R whenever operators seem to be in balance. In this situation,
Q increments R (unless R is maximal, in which case it decrements), to create
experimental data from which the other operators compute their value functions.

3 Simulation Results

To study the behavior of our proposed system, we wrote a custom simulator in
the statistical environment R[17], and explored the design of Q through several
simulation experiments. The basis for our experiments is the following simulated
system, containing an environment, one management operator, and one closure
operator.

The environment has the properties that:

1. X(t) = 1000 sin((t/p) ∗ 2π) + 1000 + e(0, σ), time-varying periodic load be-
tween 1000 and 2000 with Gaussian error e(0, σ).

2. P (R, X) = X/R, analogous to response time in a server farm of R servers,
with perfect efficiency.

X represents load arriving from outside the environment, while P represents
behavior as a function of load X and resources R. The formulae for these prop-
erties are not known to any operator, though each operator can observe a small
number of pairs P, R to estimate P (R).

There is one operator2 O, with:

1. V (P) = 200 − P (diminishing returns in proportion to increased response
time).

2. w measurements (its measurement window), used to compute its least-
squares estimate of ∆V/∆R.

There is one resource closure Q, with:

1. C(R) = R (analogous to adding same-cost increments of resources).

2. |∆R| = d (constant increment magnitude).

3. R ∈ [1, 1000] (finite resource bound).
4. Rinitial = 50 (modest amount of resources allocated to reduce startup set-

tling time).

2 Since operators compose by adding their outputs, it is sufficient to show that one
such function is manageable.

X(t) and R(t) independently vary with time, and cause variation with time in
P (R, X), C(R), and V (P).

In the above, there are four model parameters we can vary in simulation:

1. σ represents the standard deviation of a Gaussian error term e(0, σ), repre-
senting a situation in which measurement errors are normally distributed.

2. p represents the period of the periodic load function, which affects the opti-
mal increment d to use in updating R.

3. d represents the constant addend that Q uses to update R.
4. w represents the number of samples in O’s estimate of the rate of change of

V .

This instance was chosen for study because:

1. It has an easily computable theoretical best value for R, which is Rbest(X) =√
X .

2. The optimal solution does not reach the boundaries of R’s range.
3. There is exactly one local maximum so hill-climbing is guaranteed to con-

verge to that maximum.
4. P , V , C, and X are minimally complex but provide interesting behavior3

Note that the operator O estimates ∆V/∆R by assuming that there is a
linear relationship between V and R, but that the actual relationship, unknown
to O, is V = 200 − P = 200 − X/R, which is hyperbolic. Our tests indicate
that this inaccuracy does not matter at all for our purposes, and we observed no
difference between using a linear model and the more accurate hyperbolic model
in simulation. Part of the reason is that neither the linear nor the inverse-linear
model accounts for X , so that both are equally inaccurate.

There are several roles of Q in managing the system. One effect of a fixed
|∆R| is to quantize the values R can take to a set of finitely many achievable
values, thus controlling the data from which ∆V/∆R is computed. Q enforces
this set of values, and keeps values within feasible range. Quantization reduces
errors in estimates of ∆V/∆R by keeping ∆R from becoming too small.

In early experiments, we tried to increment R by ∆R/∆(V − C) (for one
unit improvement in cost), but this showed divergent behavior due to errors in
estimating ∆(V −C)/∆R. The behavior did not improve when substituting any
constant multiple of the addend. Clearly, exposing a parameter to raw increment
recommendations was “too risky”. Thus we chose to utilize a constant increment
instead.

3.1 Simulating The Model

In the simulation, we assume that all operators are invoked at each time step,
followed by invoking Q on their results. We compared the performance of the
system in each test case to the best-case performance in which the resource
function tracks the theoretical optimum (with no noise).

3 Note that if V and C are both linear in R, then either the system saturates at one
end of R’s range, or is in balance for every R if ∆V/∆R = ∆C/∆R.

0 200 400 600 800

−
0.

5
0.

0
0.

5
1.

0

time

∆(
V

−
C

)
∆R

∆(V − C) ∆R

0 200 400 600 800

90
10

0
11

0
12

0
13

0

time

V
−

C

Actual vs Optimum V − C

0 200 400 600 800

0
2

4
6

time

%
de

v
fr

om
 th

eo
re

tic
al

 b
es

t

Deviation from Optimum V − C

Fig. 2. Input to Q is seemingly unpredictable and random(left), but the output of the
system is surprisingly close to the theoretical best performance, shown as circles in the
middle plot. The percent difference from theoretical best performance is small (right).

Results of an example simulation are shown in Figure 2. In this simulation,
p = 300, d = 1, w = 10, and σ = 0; in all figures in this paper, the first 200 steps
are omitted to allow the system to settle into periodic behavior. On the left is
the raw input to Q, expressed as ∆(V − C)/∆R. This is often unpredictable,
swinging from positive to negative as the näıve estimator of ∆V/∆C makes
mistakes due to lack of knowledge of X . These mistakes are mitigated by ignoring
the magnitude of ∆(V −C)/∆R and considering only its sign. The agile way in
which the system corrects estimation errors allows it to track well the theoretical
target (shown in the middle, as a series of circles). The percent error between
theoretical and simulated behavior is surprisingly small (right).

The reader might assume incorrectly at this point that Q is merely receiving
information from O and acting upon that received information. It is better to
think of Q as “constructing experiments” to which O reacts by receiving and
forwarding experimental results. While the results of experiments are somewhat
random4, Q’s structure assures that the statistical behavior (e.g., how well the
system tracks an ideal performance goal) is less random and more predictable.

To understand Q’s role in constructing experiments, consider the unexpected
downturn with X increasing in Figure 2, at about t = 250. The reason the down-
turn occurs is that X increases quickly enough that ∆(V − C)/∆R becomes
negative, suggesting that R should be decreased when in fact it should be in-
creased. The next experiment of Q decreases R and tries again, with the result
that ∆(V −C)/∆R decreases more quickly. This allows Q to correct its mistake
and proceed in the direction of best value, without becoming aware that changes
in a latent independent variable X were involved in its mistake.

3.2 Effect Of Increment Magnitude

The effect of changing the increment d in the simulation is substantial. Consider
the effect of d = 1, 3, 5 upon the original model (Figure 3). In the figure, the
circles represent theoretically optimal behavior. In this experiment, p = 100,

4 Again, due to lack of ability to observe determinism.

0 100 200 300 400

80
10

0
12

0
14

0

time

ne
t r

ew
ar

d

d=1

0 100 200 300 400

80
10

0
12

0
14

0

time

ne
t r

ew
ar

d

d=3

0 100 200 300 400

80
10

0
12

0
14

0

time

ne
t r

ew
ar

d

d=5

Fig. 3. The effect of different choices for ∆R includes overshoot (right) and lack of
tracking (left).

period d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

50 96.6 92.6 91.1 94.9 93.7 92.3 90.7 86.8
100 93.4 97.4 97.4 96.6 95.1 92.9 90.5 80.4
150 93.4 98.4 97.9 96.9 95.5 92.7 89.7 80.7
200 97.3 98.7 98.2 97.1 95.3 91.8 89.7 81.7
250 98.3 98.9 98.3 97.0 95.3 92.1 89.1 81.1
300 98.9 99.1 98.3 97.1 95.1 91.9 89.2 80.6
350 99.2 99.1 98.2 96.9 95.0 91.8 89.4 79.4
400 99.3 99.2 98.4 96.8 95.0 91.7 89.2 81.0
450 99.5 99.2 98.2 97.0 94.5 91.8 89.3 81.5
500 99.6 99.2 98.3 96.9 94.6 91.8 89.2 80.7

Table 1. Efficiencies of combinations of increment and period indicate that increment
is a critical parameter of the algorithm. Efficiencies for the conditions in Figure 3 are
shown in bold. For all tests in this table, σ = 0 and w = 10.

w = 10, and σ = 0. Note that d = 1 causes convergence to be too slow and
remain lower than optimal (undershoot), while d = 5 causes repeated jumps
around the optimum value (overshoot). d = 3 is approximately appropriate for
p = 100, which controls how quickly X changes. The best choice for d depends
upon the maximum of ∆X/∆t (which is unknown to and not discoverable by
Q).

We compared the efficiency of several combinations of increment and period,
to understand their relationship (Table 1). The efficiency of each run is defined
as the ratio of sums of V − C to the theoretical best V − C:

E =
Σi(Vi − Ci)

Σi(V best

i
− Cbest

i
)

(which is the same as the ratio of their averages), where V best

i
− Cbest

i
is the

maximum theoretical payoff. The results clearly show that there is a best d
for every p in achieving maximum efficiency. We conclude that d is a critical
parameter and a good candidate for dynamic tuning.

0 200 400 600 800

80
10

0
12

0
14

0

time

V
−

C

w=10

0 200 400 600 800

80
10

0
12

0
14

0

time

V
−

C

w=20

0 200 400 600 800

80
10

0
12

0
14

0

time

V
−

C

w=30

Fig. 4. The effect of increasing window size is to magnify errors in estimation.

0 200 400 600 800

80
10

0
12

0
14

0

time

ne
t r

ew
ar

d

σ=0

0 200 400 600 800

80
10

0
12

0
14

0

time

ne
t r

ew
ar

d

σ=50

0 200 400 600 800

80
10

0
12

0
14

0

time

ne
t r

ew
ar

d

σ=100

Fig. 5. The effect of greater amounts of noise is to increase convergence time. Notice
the increase in oscillations around the optimal as noise increases.

3.3 Effect Of Window Size

Our next experiment was to compare the effects of various window sizes w =
10, 20, 30 with period p = 300, increment size d = 1, and noise magnitude σ = 0
(Figure 4). Note that as window size increases, the tracking of the ideal value is
less accurate, and that larger window sizes magnify errors in estimation rather
than lending accuracy by smoothing. This is the opposite of what one might
expect.

To understand this effect, consider that w determines the number of observa-
tions involved in estimating value, where at any one time some of these may be
in error. Estimating value based upon erroneous data leads to erroneous conclu-
sions, such that a larger w provides the potential for each erroneous observation
to have a greater impact.

3.4 Effect Of Noise

Noise has the effect of making the estimates ∆V/∆R inaccurate, and thus affects
convergence time. We simulated the system described above with varying values
of σ. Figure 5 exhibits three such experiments, corresponding to σ = 0, 50, 100.
In this experiment, p = 300, d = 1, and w = 10. The circles represent optimum
performance in the absence of noise.

0 200 400 600 800

80
10

0
12

0
14

0

time

ne
t r

ew
ar

d

w=10

0 200 400 600 800

80
10

0
12

0
14

0

time

ne
t r

ew
ar

d

w=20

0 200 400 600 800

80
10

0
12

0
14

0

time

ne
t r

ew
ar

d

w=30

Fig. 6. The effect of different sizes for an operator’s history window. A value of w that
is too large interacts with the inaccuracy of the model to make overall performance
less responsive.

3.5 Effect Of Window On Noise

We next repeated the experiment in Section 3.3 but added a constant magnitude
of Gaussian noise. We thought that larger windows would be beneficial, but
actually smaller is always better (Figure 6). In the figure, noise magnitude σ =
100, period p = 300, increment size d = 1, and window w = 10, 20, 30.

The efficiencies of several variations are shown in Table 2. Again, the effi-
ciency of each run is the ratio of the sum of payoffs over time to the sum of best
payoffs. The first row contains data for zero noise. Larger windows always lead
to worse efficiency. Thus we conclude that small values of w (between 3 and 10)
are appropriate.

σ w = 5 w = 10 w = 15 w = 20 w = 25 w = 30

0 99.1 98.9 98.7 98.5 98.1 97.6

25 99.3 98.9 98.7 98.5 98.0 97.6
50 99.4 99.0 98.7 98.5 98.0 97.6
75 99.3 98.9 98.6 98.1 98.0 97.5
100 98.9 98.8 98.5 98.2 97.6 97.6

125 99.0 99.1 98.5 98.2 97.7 97.5
150 99.1 99.2 98.5 98.1 97.9 97.6

Table 2. Efficiencies of combinations of window and noise show counter-intuitively that
response to noise in input is not improved by sampling in larger windows. Efficiencies
for Figures 4 and 6 are shown in bold. For all tests in this table, p = 300 and d = 1.

4 Limitations

Our algorithm has several theoretical limitations to its applicability. It is a hill-
climbing algorithm that will always converge to a local maximum value, but is

not guaranteed to converge to a global maximum value unless there is only one
global maximum. It always seeks a global maximum only if there is exactly one
local maximum for Σi(Vi) − C, which is true only for the values of R for which
the finite difference ∆(ΣiVi−C)/∆R (which is a function of R) is 0. We must use
difference equations to describe this system because derivatives are not always
meaningful; the legal values of R can be discrete.

By the assumptions above, the finite differences between values of ΣiVi and
C for values of R near its current value are always strictly greater than 0; we
notate these as ∆(ΣiVi)/∆R and ∆C/∆R. Because of this, the combined dif-
ference function ∆(ΣiVi − C)/∆R is zero (the system is in balance) only when
∆(ΣiVi)/∆R and ∆C/∆R are equal. The only way to assure that there is only
one local maximum is for ∆(ΣiVi)/∆R to equal ∆C/∆R for at most one value
of R.5

There are only two ways in which this can happen: by a down-crossing,
during which value initially changes faster than cost with respect to R and then
proceeds to change more slowly than cost, or by the opposite event of an up-
crossing. Any value difference function that crosses the cost difference function
in the opposite direction from another has the potential to add an extra local
maximum. The difference function of the sum of value difference functions that
all cross the cost difference function in the same direction also crosses in that
direction and is guaranteed to have a unique stable point.

The algorithm also only works if the Vi are never constant over an interval
of P , and P is never constant over any interval of R. In other words, the system
handles what might be called “highly dynamic” situations, but stops at a non-
optimum value of R if V remains constant near that value.

Thus the assumptions we outlined at the beginning are necessary rather than
just sufficient, which can make it difficult to design appropriate cost and value
functions for practical situations. We believe that handling value functions with
regions of constant value requires a different approach, which we plan to discuss
in later work.

5 Future Work

Several open issues remain for future work.
First, the algorithms for adjusting d optimally have not been determined, and

would be required in order to create a practical implementation. Our simulation
data suggests possible solutions, but these have not been evaluated fully.

Second, the efficiency calculations we utilized to evaluate the algorithm are
not available if the solution is deployed in the real world. Some way to estimate
the efficiency of a real-world solution is needed.

Third, the system is easily generalized to the case in which R is a vector
rather than a scalar. X can become a vector without modifying anything in the
basic model, and different operators can even have varying concepts of X . If R

5 If these are never equal, then the maximum is either the highest or lowest value of
R.

is a vector, then ∆V/∆R becomes a gradient with respect to the components
of R, and the parameter closure determines a direction in which to move one
unit (∆R) in a quantized R-space rather than a sign of movement in one-space.
Much will be determined by exactly how we quantize R-space, and this design
problem seems difficult at present.

Fourth, there is an intimate relationship between this operator theory and
Burgess’s promise theory(as discussed in[7]) that is yet to be fully understood.
A promise is a non-binding statement of intent. The value judgments communi-
cated to Q are promises to Q, but whether and how one could reason about that
information remains unclear, especially if there is coupling between services and
if agents might be untruthful about parameter values to their private advantage.

Fifth, this model only handles simply increasing functions. Step-functions
and functions with constant-value regions are common in service-level agree-
ments, and there are ways of transforming any such function into a function
conforming to our model. We have not studied this in enough detail to com-
ment, though some techniques for approximating step functions with continuous
functions seem relevant.

6 Conclusions

We have demonstrated that a model for managing the resources available to
a localized service can base decisions on comparing local cost with distributed
(and possibly disparate) concepts of value. The model converges to the balance
point between value and cost without utilizing any knowledge of the relationship
between performance and resources. Instead, success is based upon physical in-
variants of the environment (e.g., persistence of conditions) that allow the closure
operator to statistically discover near-optimal resource levels through repeated
experiment. The model is very flexible and requires a minimum of assumptions.
One can add and remove at will, operators with different concepts of value. The
performance function P can change unexpectedly with quick adaptation to a
new optimum. There is a predictable relationship between the rate at which
load varies and the best increment to be utilized by Q, although long windows
of observation seem to hurt performance in all cases.

This paper centers upon a very simple result, but it opens a Pandora’s box
of possibilities. It is possible to use distributed concepts of demand and rea-
soning in concert with a centralized concept of service, and make sense of the
global optimum. Convergence of this approach depends only upon the ability
of management software to perform controlled experiments, and not upon any
model assumptions. This is a first step toward distributed management with no
centralized authority.

References

1. Burgess, M.: Configurable immunity for evolving human-computer systems. Sci-
ence of Computer Programming 51 (2004) 197

2. Burgess, M.: Computer immunology. Proceedings of the Twelth Systems Ad-
ministration Conference (LISA XII) (USENIX Association: Berkeley, CA) (1998)
283

3. Burgess, M.: On the theory of system administration. Science of Computer Pro-
gramming 49 (2003) 1

4. Burgess, M.: Cfengine as a component of computer immune-systems. Proceedings
of the Norwegian Conference on Informatics (1998)

5. Burgess, M.: A site configuration engine. Computing Systems 8(2) (1995) 309–337
6. Burgess, M., Ralston, R.: Distributed resource administration using cfengine.

Softw., Pract. Exper. 27(9) (1997) 1083–1101
7. Burgess, M., Couch, A.: Autonomic computing approximated by fixed-point

promises. In: Proceedings of the First IEEE International Workshop on Mod-
eling Autonomic Communication Environments (MACE), Multicon Verlag (2006)
197–222

8. Couch, A.L., Chiarini, M.: Dynamic consistency analysis for convergent operators.
In: AIMS ’08: Proceedings of the 2nd international conference on Autonomous In-
frastructure, Management and Security, Berlin, Heidelberg, Springer-Verlag (2008)
148–161

9. Couch, A.L., Chiarini, M.: A theory of closure operators. In: AIMS ’08: Proceedings
of the 2nd international conference on Autonomous Infrastructure, Management
and Security, Berlin, Heidelberg, Springer-Verlag (2008) 162–174

10. Couch, A., Hart, J., Idhaw, E.G., Kallas, D.: Seeking closure in an open world: A
behavioral agent approach to configuration management. In: LISA ’03: Proceedings
of the 17th USENIX conference on System administration, Berkeley, CA, USA,
USENIX (2003) 125–148

11. Schwartzberg, S., Couch, A.: Experience implementing a web service closure. In:
LISA ’04: Proceedings of the 18th USENIX conference on System administration,
Berkeley, CA, USA, USENIX (2004) 213–230

12. Wu, N., Couch, A.: Experience implementing an ip address closure. In: LISA ’06:
Proceedings of the 20th USENIX conference on System administration, Berkeley,
CA, USA, USENIX (2006) 119–130

13. Couch, A.: Summary of the third workshop on hot topics in autonomic computing
(HotAC III). ;login: Magazine 33(5) (2008) 112–113

14. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. John Wiley & Sons (2004)

15. Sauve, J., Moura, A., Sampaio, M., Jornada, J., Radziuk, E.: An introductory
overview and survey of Business-Driven IT management. In: The First IEEE/IFIP
International Workshop on Business-Driven IT Management (BDIM). (2006) 1–10

16. Moura, A., Sauve, J., Bartolini, C.: Research challenges of Business-Driven IT
management. In: The Second IEEE/IFIP International Workshop on Business-
Driven IT Management (BDIM). (2007) 19–28

17. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. (2008) ISBN
3-900051-07-0.

