Dynamics of resource closure operators

Dr. Alva L. Couch Marc Chiarini Tufts University

Outline of this talk

- Violate many of the "mores" of autonomic computing.
- Demonstrate that one can get away with this.
- Duck!

A critical juncture...

- Autonomic computing as conceptualized now will work if:
 - There are better models.
 - We can compose several control loops with predictable results.
 - Humans will trust the result.
- Source: Hot Autonomic Computing 2008: Grand Challenges of Autonomic Computing.

Not...!

- Models are already bloated, and some critical information is unknowable.
- The composition problem as posed now is theoretically impossible to solve.
- Trust is based upon simple assurances that many current systems cannot make.

Inspiration: computer immunology

- Burgess: we can manage systems via independently acting immunological operators.
- Autonomic computing can be approximated by these operators (Burgess and Couch, 2006).

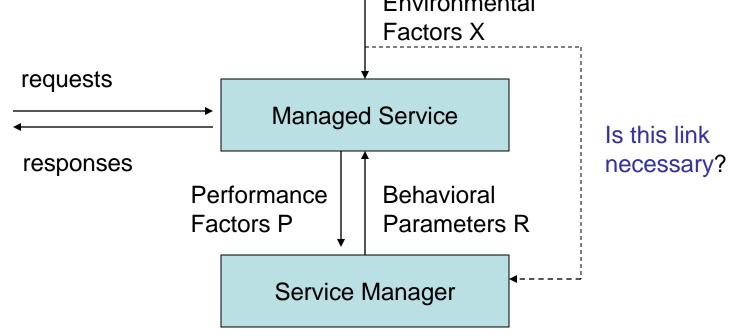
Open-world and closed-world assumptions

- IBM's blueprint for autonomic computing is based upon a **closed-world assumption**: one can learn everything about a system.
- Burgess' immunology is based upon an open-world assumption: some system attributes are unknowable.

A minimalist approach

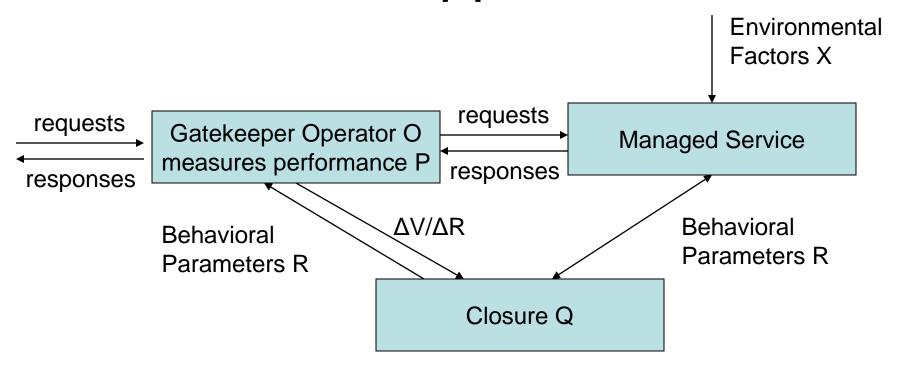
- Consider the absolute minimum of information required to control a resource.
- Formulate control as a cost/value tradeoff.
- Operate in an open world.
- Study mechanisms that maximize reward = value-cost.
- Avoid modeling whenever possible.

Traditional control-theoretic approach to resource management



- Develop a model of P(R,X) and a model of X.
- Predict changes in P due to changes in R.
- Weigh value V(P) of P against cost C(R) of R.

Our approach



- Immunize R based upon partial information about P(R,X).
- Distributed agent O knows V(P), predicts changes in value ΔV/ΔR.
- Closure Q knows C(R), weighs $\Delta V/\Delta R$ against the change in cost $\Delta C/\Delta R$, and increments or decrements R.

Key differences from traditional control model

- Knowledge is distributed.
 - Q knows cost but not value
 - O knows value but not cost.
 - There can be multiple, distinct concepts of value.
- We do not model P or X at all.

A simple simulation

- We tested this architecture via simulation.
- Environment X = sinusoidal load function (between 1000 and 2000 requests/second).
- Resource R = number of servers assigned.
- Performance (response time) P = X/R.
- Value V(P) = 200-P
- Cost C(R) = R
- Objective: maximize V-C, subject to 1≤R≤1000
- Theoretically, objective is achieved when R=X^{1/2}

Some really counter-intuitive results

- Q sometimes guesses wrong, and is only statistically correct.
- Nonetheless, Q can keep V-C within 5% of the theoretical optimum if tuned properly, while remaining highly adaptive to changes in X.

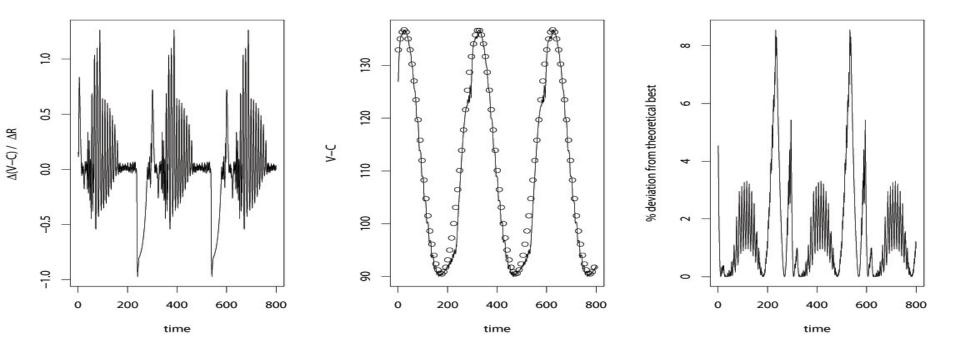
Parameters of the system

- Increment ΔR: the amount by which R is incremented or decremented.
- Window w: the number of measurements utilized in estimating $\Delta V/\Delta R$.
- Noise σ: the amount of noise in the measurements of performance P.

Tuning the system

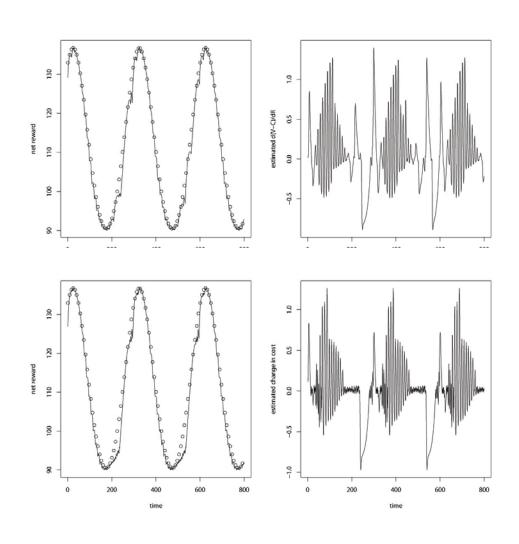
- The accuracy of the estimator that O uses is not critical.
- The window w that O uses is not critical, (but larger windows magnify estimation errors!)
- The increment ΔR that Q uses is a critical parameter that affects how closely the ideal is tracked.
- This is not machine learning!!!

A typical run of the simulator



- $\Delta(V-C)/\Delta R$ is chaotic (left).
- V-C closely follows ideal (middle).
- Percent differences from ideal are small (right).

Model is not critical

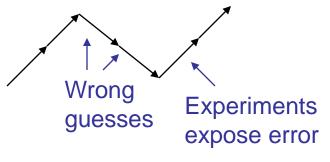


- Top run fits V=aR+b so that ΔV/ΔR≈a, bottom run fits to more accurate model V=a/R+b.
- Accuracy of O's estimator is **not critical**, because estimation errors from unseen changes in X dominate errors in the estimator!

Why Q guesses wrong

- We don't model or account for X, which is changing.
- Changes in X cause mistakes in estimating ΔV/ΔR, e.g., load goes up and it appears that value is going down with increasing R.
- These mistakes are quickly corrected, though, because when Q acts incorrectly, it gets almost instant feedback on its mistakes from O.

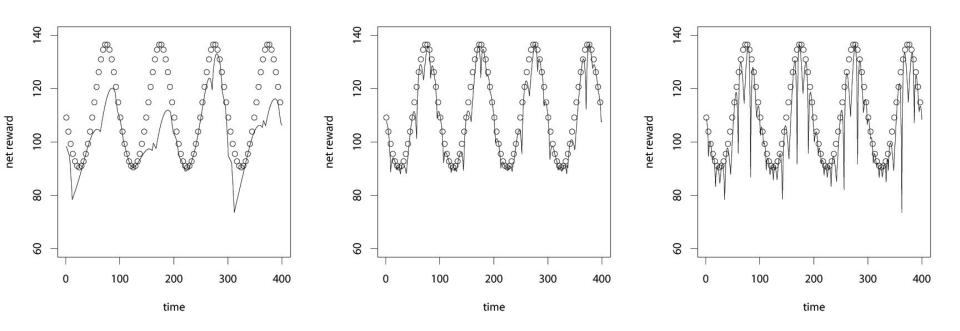
Error due to increasing load is corrected quickly



A brief tour of results

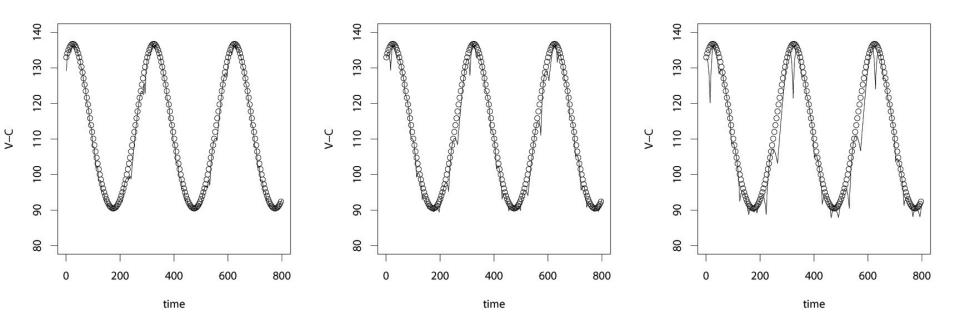
- Effect of $\Delta R = Q$'s increment for R.
- Effect of w = window size for estimator.
- Effect of Gaussian noise in X signal.

Increment $\Delta R = 1,3,5$



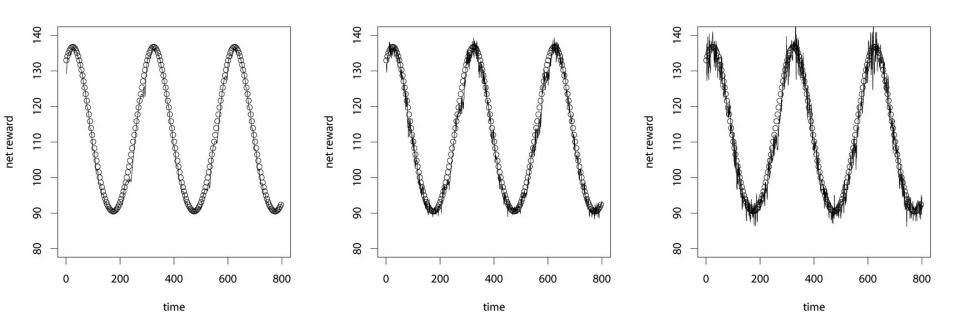
- Plot of time versus V-C.
- ΔR too small leads to undershoot.
- ΔR too large leads to overshoot and instability.

Window w=10,20,30



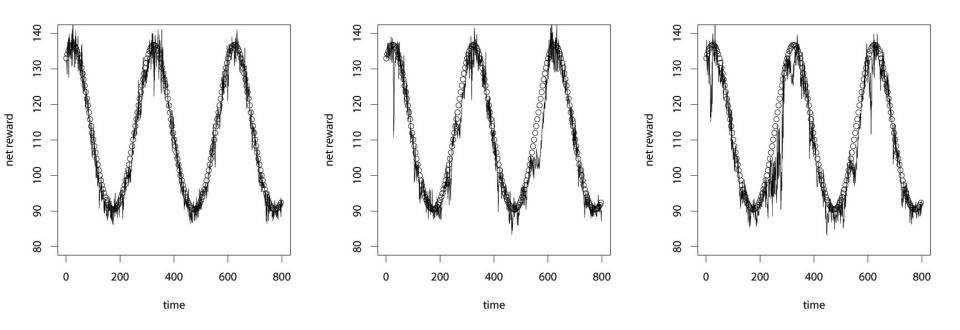
- Plot of time versus V-C.
- Increases in w magnify errors in judgment and decrease tracking.

0%, 2.5%, 5% Gaussian Noise



- Plot of time versus V-C.
- Noise does not significantly affect the algorithm.

w=10,20,30; 5% Gaussian Noise



- Plot of time versus V-C.
- Increasing window size increases error due to noise, and does not have a smoothing effect.

Limitations

For this to work,

- One must have a reasonable concept of cost and value for R.
- V, C, and P must be simply increasing in their arguments (e.g., V(R+ΔR)>V(R))
- V(P(R))-C(R) must be convex (i.e., a local maximum is a global maximum)

Open questions

- How to design V and C to match SLAs.
- How to assure convexity of V(P(R))-C(R).
- How to tune the size of ΔR .
- How to handle functions that can stay constant with increased resources or performance

Some hope...!

- To the best of our knowledge, a majority of value-cost functions are convex.
- If the first difference derivatives

```
(V_i(P_i+\Delta P)-V_i(P_i))/\Delta P
```

are simply increasing or decreasing in P, then $[\Sigma V_i(P_i(R))]$ -C(R)

Is convex.

 Step functions are easy to handle (to be discussed in ATC-2009 paper next week).

The big deal

- We did this without machine learning.
- We did it without a complete model.
- We traded complete modeling of P for constraint modeling of X (and P), a much simpler problem!
- Life gets simpler!

Dynamics of resource closure operators

Dr. Alva L. Couch Marc Chiarini Tufts University