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Outline of this talk

• Violate many of the “mores” of autonomic 
computing. 

• Demonstrate that one can get away with 
this. 

• Duck!



A critical juncture…

• Autonomic computing as conceptualized 
now will work if:
– There are better models. 
– We can compose several control loops with 

predictable results.
– Humans will trust the result.  

• Source: Hot Autonomic Computing 2008: 
Grand Challenges of Autonomic 
Computing. 



Not…!

• Models are already bloated, and some 
critical information is unknowable. 

• The composition problem as posed now is 
theoretically impossible to solve. 

• Trust is based upon simple assurances
that many current systems cannot make. 



Inspiration: computer immunology

• Burgess: we can manage systems via 
independently acting immunological 
operators. 

• Autonomic computing can be 
approximated by these operators 
(Burgess and Couch, 2006). 



Open-world and closed-world 
assumptions

• IBM’s blueprint for autonomic computing is 
based upon a closed-world assumption: 
one can learn everything about a system.

• Burgess’ immunology is based upon an 
open-world assumption: some system 
attributes are unknowable.



A minimalist approach

• Consider the absolute minimum of 
information required to control a resource.

• Formulate control as a cost/value 
tradeoff. 

• Operate in an open world. 
• Study mechanisms that maximize 

reward = value-cost. 
• Avoid modeling whenever possible. 



Traditional control-theoretic 
approach to resource management

• Develop a model of P(R,X) and a model of X.
• Predict changes in P due to changes in R. 
• Weigh value V(P) of P against cost C(R) of R.  
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Our approach

• Immunize R based upon partial information about P(R,X).
• Distributed agent O knows V(P), predicts changes in value ΔV/ΔR.
• Closure Q knows C(R), weighs ΔV/ΔR against the change in cost 

ΔC/ΔR, and increments or decrements R.
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Key differences 
from traditional control model

• Knowledge is distributed.
– Q knows cost but not value
– O knows value but not cost. 
– There can be multiple, distinct concepts of 

value. 
• We do not model P or X at all. 



A simple simulation
• We tested this architecture via simulation. 
• Environment X = sinusoidal load function 

(between 1000 and 2000 requests/second). 
• Resource R = number of servers assigned. 
• Performance (response time) P = X/R.
• Value V(P) = 200-P
• Cost C(R) = R
• Objective: maximize V-C, subject to 1≤R≤1000
• Theoretically, objective is achieved when R=X½



Some really
counter-intuitive results

• Q sometimes guesses wrong, and is only 
statistically correct. 

• Nonetheless, Q can keep V-C within 5% 
of the theoretical optimum if tuned 
properly, while remaining highly adaptive 
to changes in X. 



Parameters of the system

• Increment ΔR: the amount by which R is 
incremented or decremented. 

• Window w: the number of measurements 
utilized in estimating ΔV/ΔR.

• Noise σ: the amount of noise in the 
measurements of performance P. 



Tuning the system

• The accuracy of the estimator that O uses 
is not critical.

• The window w that O uses is not critical, 
(but larger windows magnify estimation 
errors!)

• The increment ΔR that Q uses is a critical 
parameter that affects how closely the 
ideal is tracked. 

• This is not machine learning!!!



A typical run of the simulator

• Δ(V-C)/ΔR is chaotic (left). 
• V-C closely follows ideal (middle).
• Percent differences from ideal are small (right).



Model is not critical
• Top run fits V=aR+b 

so that ΔV/ΔR≈a, 
bottom run fits to more 
accurate model 
V=a/R+b. 

• Accuracy of O’s 
estimator is not 
critical, because 
estimation errors from 
unseen changes in X 
dominate errors in the 
estimator! 



Why Q guesses wrong

• We don’t model or account for X, which is 
changing. 

• Changes in X cause mistakes in estimating 
ΔV/ΔR, e.g., load goes up and it appears that 
value is going down with increasing R.

• These mistakes are quickly corrected, though, 
because when Q acts incorrectly, it gets almost 
instant feedback on its mistakes from O. 
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A brief tour of results

• Effect of ΔR = Q’s increment for R. 
• Effect of w = window size for estimator. 
• Effect of Gaussian noise in X signal. 



Increment ΔR=1,3,5

• Plot of time versus V-C. 
• ΔR too small leads to undershoot. 
• ΔR too large leads to overshoot and instability.



Window w=10,20,30

• Plot of time versus V-C. 
• Increases in w magnify errors in judgment and 

decrease tracking. 



0%, 2.5%, 5% Gaussian Noise

• Plot of time versus V-C. 
• Noise does not significantly affect the algorithm. 



w=10,20,30; 5% Gaussian Noise

• Plot of time versus V-C. 
• Increasing window size increases error due to 

noise, and does not have a smoothing effect. 



Limitations

For this to work, 
• One must have a reasonable concept of 

cost and value for R. 
• V, C, and P must be simply increasing in 

their arguments (e.g., V(R+ΔR)>V(R))
• V(P(R))-C(R) must be convex (i.e., a local 

maximum is a global maximum) 



Open questions

• How to design V and C to match SLAs.
• How to assure convexity of V(P(R))-C(R). 
• How to tune the size of ΔR. 
• How to handle functions that can stay 

constant with increased resources or 
performance 



Some hope…!

• To the best of our knowledge, a majority of 
value-cost functions are convex. 

• If the first difference derivatives 
(Vi(Pi+ΔP)-Vi(Pi))/ΔP

are simply increasing or decreasing in P, then
[∑Vi(Pi(R))]-C(R)

Is convex. 
• Step functions are easy to handle (to be 

discussed in ATC-2009 paper next week). 



The big deal

• We did this without machine learning. 
• We did it without a complete model. 
• We traded complete modeling of P for 

constraint modeling of X (and P), a much 
simpler problem! 

• Life gets simpler! 
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