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Convergent operators

• A convergent operator assures a specific 
network state and is idempotent if that 
state exists already. 

• Example 1: set a parameter to a value. 
• Example 2: deploy a service. 
• CFEngine implements a set of convergent 

operators for system management.



What does convergence mean?

• Convergent operators “immunize” the 
system against harmful degradations. 

• Example 1: if a parameter ever changes to 
a less desirable value, change it back. 

• Example 2: if a service stops working, 
either restart or redeploy it. 



CFEngine “immunization”

• Repeatedly invoke operators at some 
(approximate) rate λ.

• Problems have max. lifetime of about 1/λ.
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Assurance and acceptance
• CFEngine operators have one limitation.
• We say a state is assured by an operator if 

applying it changes the system to reflect that 
state. 

• We say a state is accepted by an operator if it 
will not change that state to another. 

• Most CFEngine operators assure exactly the 
states they accept.

• This simplifies the mathematics, but creates 
some problems in engineering self-managing 
systems. 



Dueling operators (in CFEngine)

• Suppose O1 sets up a web server and O2
tunes its performance. 

Document root

Document root

Apply O1

Apply O2

Oscillates forever
between options 
A and B

• Suppose O1 sets up a web server and O2
tunes its performance. 

1

2

3
A

B

Chooses default 
document root

Chooses faster
document root



One way to resolve the conflict…

• Encapsulate O1 and O2 inside one 
operator.
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What we really want to happen:

• O1 and O2 “collaborate” and “share 
knowledge”:
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Collaboration is difficult 

• For O1 and O2 to collaborate rather than 
dueling, O1 must accept more states than 
it assures.  

• This means that O1 must base its actions 
on a model of what a healthy webserver 
looks like. 



Statespace view

• O1 deploys a web server, O2 tunes it.
• Sa are assured states; Si are accepted 

states 
O1:Si

O1:Sa
O2:Sa

O2:Si

Assured by O2, accepted by O1



Closures

• A closure is a self-managing part of an 
otherwise (perhaps) open system. 

• Key concepts: 
– Hides control loops inside a black box. 
– Hides incidental complexity: choices made for 

no justifiable reason need not be made by 
humans.

• We borrow ideas from closures to improve 
operators.  



Closure operators

• A closure operator is a convergent operator that 
accepts more states Si than the states Sa that it 
assures. 

• The difference between sizes of Si and Sa is a 
measure of the incidental complexity of the 
operator, i.e., the choices that it makes for which 
it does not have strong justifications. 

• One operator’s incidental choice may be another 
operator’s informed decision. 



Goal of closure operator theory

• Allow each operator to make incidental 
choices. 

• Allow other operators to replace incidental 
choices with informed choices. 

• Applying a set of operators composes 
knowledge embodied in all of them. 



Composing closure operators

• O1 repairs a web server. 
• O2 tunes a web server.
• Their “composition” is to invoke both of 

them periodically. 
O1 invocations

O2 invocations

Repair if broken

Tune if inefficient

{O1,O2}
invocations

damage



(Relatively straightforward) 
properties of closure operators

• If a set of operators act on orthogonal 
subsystems, then their composition is a 
closure operator. 

• If a set of operators shares the same 
acceptance set and a reachable fixed 
point, then their composition is a closure 
operator. 



Modeling

• Difficulty in creating a closure: how does 
one define or specify the acceptance set? 

• The assurance set is defined procedurally:
“here’s how to create a state.”

• The acceptance set is defined 
declaratively: “these states are fine if they 
are present.”



Example: what is an appropriate 
document root?

• There must be a document root. 
• It must appear in several places in the 

configuration file. 
• The same document root must be 

specified everywhere it is needed. 
• If O1 understands this, then O2’s assured 

state will be accepted by O1, and there will 
be no duel. 



Future work

• We know how to construct “a few” closure 
operators with appropriate properties. 

• Next step: design how to incorporate these 
concepts into CFEngine. 
– Use a modeling language to define CFEngine 

soft classes. 
– Use soft classes to invoke corrective actions. 



Conclusions

• CFEngine operators currently assure what 
they accept. 

• By using a constraint model, they can 
accept more than they assure. 

• This can be used to compose knowledge
of multiple operators.  



Afterword: HotAC Outcome

• June 2, 2008, Wheeling IL,USA: 
Hot Autonomic Computing attendees 
identified three grand challenges. 

• One of the agreed-upon challenges was 
control loop composition. 

• Closure operators provide a mechanism 
for composing control knowledge.



Questions?
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