
A theory of closure operators

Alva L. Couch
Marc A. Chiarini
Tufts University

Convergent operators

• A convergent operator assures a specific
network state and is idempotent if that
state exists already.

• Example 1: set a parameter to a value.
• Example 2: deploy a service.
• CFEngine implements a set of convergent

operators for system management.

What does convergence mean?

• Convergent operators “immunize” the
system against harmful degradations.

• Example 1: if a parameter ever changes to
a less desirable value, change it back.

• Example 2: if a service stops working,
either restart or redeploy it.

CFEngine “immunization”

• Repeatedly invoke operators at some
(approximate) rate λ.

• Problems have max. lifetime of about 1/λ.

1/λ 1/λ 1/λ 1/λ 1/λ

Operator invocations

problem solution

Assurance and acceptance
• CFEngine operators have one limitation.
• We say a state is assured by an operator if

applying it changes the system to reflect that
state.

• We say a state is accepted by an operator if it
will not change that state to another.

• Most CFEngine operators assure exactly the
states they accept.

• This simplifies the mathematics, but creates
some problems in engineering self-managing
systems.

Dueling operators (in CFEngine)

• Suppose O1 sets up a web server and O2
tunes its performance.

Document root

Document root

Apply O1

Apply O2

Oscillates forever
between options
A and B

• Suppose O1 sets up a web server and O2
tunes its performance.

1

2

3
A

B

Chooses default
document root

Chooses faster
document root

One way to resolve the conflict…

• Encapsulate O1 and O2 inside one
operator.

Document root

Apply O’1

Apply O’2

Stable because of
encapsulation

A

B

What we really want to happen:

• O1 and O2 “collaborate” and “share
knowledge”:

Document root

Document root

Apply O1

Apply O2

Stabilizes at
informed choice!

1

2

3

A

B

Arbitrary choice

Informed choice

Collaboration is difficult

• For O1 and O2 to collaborate rather than
dueling, O1 must accept more states than
it assures.

• This means that O1 must base its actions
on a model of what a healthy webserver
looks like.

Statespace view

• O1 deploys a web server, O2 tunes it.
• Sa are assured states; Si are accepted

states
O1:Si

O1:Sa
O2:Sa

O2:Si

Assured by O2, accepted by O1

Closures

• A closure is a self-managing part of an
otherwise (perhaps) open system.

• Key concepts:
– Hides control loops inside a black box.
– Hides incidental complexity: choices made for

no justifiable reason need not be made by
humans.

• We borrow ideas from closures to improve
operators.

Closure operators

• A closure operator is a convergent operator that
accepts more states Si than the states Sa that it
assures.

• The difference between sizes of Si and Sa is a
measure of the incidental complexity of the
operator, i.e., the choices that it makes for which
it does not have strong justifications.

• One operator’s incidental choice may be another
operator’s informed decision.

Goal of closure operator theory

• Allow each operator to make incidental
choices.

• Allow other operators to replace incidental
choices with informed choices.

• Applying a set of operators composes
knowledge embodied in all of them.

Composing closure operators

• O1 repairs a web server.
• O2 tunes a web server.
• Their “composition” is to invoke both of

them periodically.
O1 invocations

O2 invocations

Repair if broken

Tune if inefficient

{O1,O2}
invocations

damage

(Relatively straightforward)
properties of closure operators

• If a set of operators act on orthogonal
subsystems, then their composition is a
closure operator.

• If a set of operators shares the same
acceptance set and a reachable fixed
point, then their composition is a closure
operator.

Modeling

• Difficulty in creating a closure: how does
one define or specify the acceptance set?

• The assurance set is defined procedurally:
“here’s how to create a state.”

• The acceptance set is defined
declaratively: “these states are fine if they
are present.”

Example: what is an appropriate
document root?

• There must be a document root.
• It must appear in several places in the

configuration file.
• The same document root must be

specified everywhere it is needed.
• If O1 understands this, then O2’s assured

state will be accepted by O1, and there will
be no duel.

Future work

• We know how to construct “a few” closure
operators with appropriate properties.

• Next step: design how to incorporate these
concepts into CFEngine.
– Use a modeling language to define CFEngine

soft classes.
– Use soft classes to invoke corrective actions.

Conclusions

• CFEngine operators currently assure what
they accept.

• By using a constraint model, they can
accept more than they assure.

• This can be used to compose knowledge
of multiple operators.

Afterword: HotAC Outcome

• June 2, 2008, Wheeling IL,USA:
Hot Autonomic Computing attendees
identified three grand challenges.

• One of the agreed-upon challenges was
control loop composition.

• Closure operators provide a mechanism
for composing control knowledge.

Questions?

Alva L. Couch
Marc A. Chiarini
Tufts University

	A theory of closure operators
	Convergent operators
	What does convergence mean?
	CFEngine “immunization”
	Assurance and acceptance
	Dueling operators (in CFEngine)
	One way to resolve the conflict…
	What we really want to happen:
	Collaboration is difficult
	Statespace view
	Closures
	Closure operators
	Goal of closure operator theory
	Composing closure operators
	(Relatively straightforward) properties of closure operators
	Modeling
	Example: what is an appropriate document root?
	Future work
	Conclusions
	Afterword: HotAC Outcome
	Questions?

