
Dynamic Consistency Analysis for Convergent

Operators

Alva L. Couch and Marc Chiarini

Tufts University, Medford, Massachusetts, USA
alva.couch@cs.tufts.edu, marc.chiarini@tufts.edu

Abstract. It has been shown that sets of convergent operators with
a shared fixed point can simulate autonomic control mechanisms, but
many questions remain about this management technique. We discuss
how an autonomous agent can reason about whether its convergent op-
erators share a fixed point with the operators of other agents. Using a
concept of time based upon operator repetition, we show that a fail-
ure to achieve convergence within specific time limits can be used as
a probabilistic indicator of inconsistencies in local policy. We describe
a statistical inference technique that determines if an agent’s promise
strategy is feasible. The strengths of this technique are that it is both
scale-invariant and exterior to the operators whose consistency is being
evaluated.

1 Introduction

How does a configuration agent in a highly complex and distributed network
reason about the workability of its choices? What reasoning techniques work
best in a situation in which agents have only local information? What strategies
other than global information exchange can help agents reason? We attack these
questions in a novel way.

This paper arose from a question asked at AIMS 2007 by Jan Bergstra: “How
can you be sure that your [operators are] consistent?”. By this, he meant “logical
consistency”, i.e., that the goals of the operators cannot embody a contradiction.
We thought about this question for some time, and then decided upon a novel
response: logical consistency of operators is useless in a ubiquitous computing
environment, and statistical notions of consistency make more sense and are
more useful.

To start to understand what consistency might mean in a ubiquitous comput-
ing environment, we combine and expand two threads of prior work: convergent
operators and self-organizing precedences.

An operator is a management operation on a host or network. A convergent
operator P is an operator with the specific behavior that – when repeatedly
applied to a host or network – modifies the host or network so that it exhibits
a state in some known set SP of desirable states. A convergent operator P is
idempotent on states in its result set SP , i.e., it does not change any state that

is already considered desirable. Thus every s ∈ SP is a fixed point of P , i.e.
P (s) = s, and every convergent operator is also a fixed-point operator.

Convergent operators can take many forms, e.g., one operator might prune
disk space for users who are over quota, while another might act on process space
to prune runaway processes, and a third might modify the number of threads in
a web server to optimize response time.

Prior work shows that autonomic computing can be “approximated” by a
collection of convergent operators applied repeatedly at random, provided that
these operators all share some common fixed-point state [1]. Each operator – in
effect – embodies its own isolated control loop, and the set of operators behaves
like a composition of multiple control loops.

2 Operator consistency

To understand what consistency might mean for a set of operators O, we point
out that the set of fixed points SP of an operator P is a representation of
the policy of P . While we might be accustomed to expressing policies as a set
of logical rules RP , the set of states SP that happen to obey those rules is a
reasonable (though more sizable) substitute. Two sets of rules RP and RQ are
consistent if their structure does not contain a logical contradiction. By analogy,
we define:

Definition 1. Two operators P and Q are consistent if the intersection of their
fixed point sets is nonempty.

Note that trivially, operator consistency is equivalent with rule consistency, in
the sense that states matching contradictory rules have no intersection, and
vice-versa 1. Likewise,

Definition 2. A set of operators O is consistent if the intersection of all fixed
point sets of operators in O is non-empty.

One must also ensure that consistency is practical as well as theoretically
possible:

Definition 3. A set of operators O is reachably consistent (with respect to a set
of baseline states S) if, through random applications of operators in O, starting
at a state in S, the operators always achieve a common fixed point.

If all operators are at a fixed point, then clearly their policies do not contradict
one another, so reachable consistency is a sufficient condition for logical consis-
tency. The converse, however, is not true. There may be a consistent state that,
though it be fixed for all operators, can never be achieved. Suppose, e.g., that one
operator’s policy is that the web server serves subdirectories of students’ home
directories, but that no operator exists to actually set up a web server. Then
the desired state is consistent with that of other operators, but not reachably
consistent, because no operator exists that can achieve that state.

1 Expanded definitions of consistency are explored in [2].

This notion of consistency is reasonable for a small, known set of operators,
but in a ubiquitous computing environment, with no true centralized control,
there is no clear notion of which operators are active at a given time. The
contents of O is a moving target. From the point of view of any specific agent,
the total set of operators and policies in effect cannot be known, because any
snapshot of that state could potentially have changed since the snapshot.

Thus the concept of logical consistency – while well-defined – is simply not
very useful. A new notion of consistency is needed; one that is useful to an
agent with incomplete knowledge of the space of operators and/or policies being
enforced.

3 Operator Precedence

Convergent operators only work properly if the precedences between operators
are satisfied. For example, one operator might mount a filesystem, while another
might start a service depending upon that filesystem. We refer to an active
operator whose preconditions are fulfilled as being operative; an active operator
with at least one unmet precondition is inoperative.

The effects of operators often depend upon precedences between them. For
example, consider operator O1 that mounts a filesystem on a host, and operator
O2 that sets up a web service on that filesystem. These operators have a prece-
dence relationship: O1 must precede O2. Once O1 completes its task, it has no
further effect unless some other entity unmounts the filesystem, in which case
O1 mounts it again. Thus the mounted filesystem is a fixed point of operator O1.
Once this fixed point is achieved, operator O2 can achieve its fixed point and
we conclude that the set {O1, O2} has a fixed point as well. The result of both
operators is an emergent fixed point that is fixed for both operators, but fixed in
different ways for each operator. Thus each operator can be thought of as acting
on an aspect of the network, and the composition of operators into a set can be
viewed as similar to aspect composition as defined in [3–5].

By contrast, consider an operator O3 that removes any web service present.
The set {O1, O2, O3} has no fixed point, because O2 and O3 conflict, and are
thus inconsistent. This is analogous to a set of policy rules that are logically
inconsistent. Anything O2 does, O3 undoes, and vice versa. Note that conflicts
can be more subtle; it is just as damaging if O3 simply breaks O2’s web server
so that O2 is forced to continually repair it. As another example, consider, e.g.
operator O4 that moves the service set up by O2 to another filesystem. This can
only happen after O2 achieves a fixed point. Does O4 conflict with O2? This
depends very much upon how O2 is defined, and the difference between what it
assures and the states it accepts as conforming to its needs. It is possible that
a set of operators is consistent even though no consistent state is reachable via
application of the operators.

As a first step in understanding precedences between operators, [6] shows that
if operators are applied serially, and each operator is aware of its own needs, then
it is possible to satisfy the precedences between operators without codifying the

precedences separately or centrally. Instead, one applies n (distinct) operators in
sequence n times. Since this sequence contains every permutation of the opera-
tors, it contains at least one permutation satisfying the actual precedences of the
operators. If the operators are constructed to do no harm unless their precon-
ditions are met, then all operators will become operative in the course of O(n2)
trials, where n is the number of operators. We will call this result the maelstrom
theorem, after the cyclic “whirlwind” motion of operators in the proof.

Reasons for this perhaps counter-intuitive result are twofold: facts about
permutations and assumptions about operators. Operators are assumed to be
aware of their precedences and idempotent unless precedences are fulfilled. An
operator, applied to a network that is not ready for it because preconditions are
lacking, will not affect network state or other operators. Likewise, an operator
applied to a network to which it has already been successfully applied will do
no harm. Changes will occur only in the case where an operator’s preconditions
have been fulfilled and the network does not already conform to the operator’s
expected outcomes.

This is the context in which prior results end and this paper begins.

4 Consistency as an Emergent Property

So far, we have translated the problem of rule consistency into the problem of
determining whether fixed-point sets intersect. This change does not yet sim-
plify matters. It remains difficult to analyze whether a given set of operators
shares a fixed point, particularly when the operators act upon different parts of
a distributed network. Static analysis of operator fixed-points is difficult enough
when we have complete knowledge of the operators (the problem is equivalent to
policy consistency[7]), and virtually impossible when we have incomplete knowl-
edge of the operators[8]. Based upon prior work, without further assumptions,
we conclude that the problem of statically determining whether a particular set
of distributed operators share a fixed point is intractable, in the same way that
it is computationally hard to determine consistency of an unconstrained set of
rules.

But the maelstrom theorem described above provides a possible alternative
to this quandary. If we know that a hidden order (e.g., a total ordering, or logical
consistency) must emerge in a certain number of steps of a process (or in a known
time interval), and it does not emerge, then it must not be present. If we can
then determine when that order should emerge, then its emergence is a necessary
and sufficient proof of its existence, while lack of emergence within time limits
constitutes statistical (but not deterministic) proof of its non-existence. We call
this last statement the emergent ordering principle.

The emergent ordering principle serves as a starting point for a very different
notion of consistency than before. Prior attempts at determining consistency
(of operators or – equivalently – of the policies that they enforce) relied upon
describing the intent of operators (or, equivalently, the constraints of policy).
The emergent ordering principle conveniently circumvents this requirement; we

need not compute a total order of operators in order to know that such an order
exists. Similarly, a proof of the existence of a set of consistent operators need
not inform us as to exactly how or why they are consistent.

Perhaps most important, whether consistency and order emerge globally is
relatively unimportant; what is important is whether consistency and order arise
from one’s own actions or not. From an agent’s point of view, there is no meaning
to global consistency; what the agent manages is either consistent or not. Thus
we study how to test for consistency without describing intent, computing global
information, or deriving causal information.

5 Kinds of Operators

In describing the properties of statistical consistency, there are many kinds of
convergent operators and it will help us to consider each kind of operator sepa-
rately.

Every result in this paper presumes the existence of a set of convergent
operators, each of which has one or more fixed points, in the sense that once
some fixed point is achieved (through some finite number of applications of the
operator), the operator makes no further changes to the network unless some
other force moves the network away from the operator’s fixed point.

Many common operators are single-step, in the sense that they perform only
one change if their precedences are fulfilled, and are idempotent on both sides of
that step. Examples of a single-action operator include “mounting a filesystem”
or “setting up a service”. A single-step operator acts upon a non-conforming
part of a network, checks that necessary preconditions have been fulfilled, and
then effects a state change in that part to make it acceptable.

A “multiple-step” operator, by contrast, takes several steps to achieve a fixed
point. Examples of a multiple-step operator include incrementing (or decrement-
ing) the number of threads for a web server until response time is optimal. In this
case, each operator invocation adds one thread, and the fixed point is achieved
when a desired number of threads w (according to some externally defined crite-
ria) have been invoked. This is one example of a bounded multiple-step operator,
in which the number of invocations before achieving a fixed point is bounded by
some constant L. In this case, L is the absolute bound on the number of threads
the web server can support, which is always finite. Common “autonomic” oper-
ators, e.g., performance tuning, are all multi-step operators.

Note that neither of these definitions truly conforms to the definition of
Burgess, who allows an operator to function in a continuous domain[1]. Burgess’
definition of a fixed point operator is one whose result approaches a fixed point
as the number of operator applications increases, possibly without bound. By
contrast, we require an operator to approach a fixed point after a finite and
constant number of iterations L. Thus, the results below cannot be extended to
operators under Burgess’ definition.

6 Fixed Points and Policies

Note in the above examples that the existence of a fixed point for a set of
operators is in some sense semantic rather than syntactic. Whether O2 and O4

conflict depends upon what they mean or intend, rather than how they are coded.
While the reader may suggest that they could be coded such that the fixed point
of a set becomes a syntactic property, this would not simplify the problem of
determining whether a fixed point exists. The reason for this is that the codings
– and their semantics – are distributed in a network, and centrally collecting that
information in a ubiquitous network is both intractable and unreasonable.

There is a strong relationship between “operator fixed points” in the semantic
view of network management, and “policies” in the syntactic view. Presumably,
the reason for constructing an operator is to enforce some (perhaps vaguely
defined) policy. A policy, by contrast, is a very specific description of what should
happen, independent of how it might be arranged to happen.

While it is quite obvious that one can construct an operator to implement a
policy, the converse is not so obvious. By nature, an operator is imperative, while
a policy is declarative. The difficulty arises in codifying what an operator does
in declarative terms. For example, consider an operator that – through some
complex and unknown process, perhaps enabled by machine learning – decides
which user processes to kill. This is a perfectly usable operator, but might not
be possible to codify in a policy by any more useful language than “do what
this operator says to do.” Thus we consider operators to be a more general
mechanism than policies for managing network function.

We diverge from current work on policy consistency and take a new path.
The problem of policy consistency is to determine – given a syntactic description
of the desired fixed points of a policy – whether those fixed points conflict or
not. Instead, we step sideways (figuratively speaking) and avoid syntactic coding
of intent entirely. For us, consistency of a policy expressed as a set of operators
means that they have a semantic fixed point that emerges over time, and is rep-
resented by a network’s state and behavior. Operators are considered consistent
if they together achieve a fixed point, regardless of whether we understand how
they achieve it, and independent of whether we can even codify their intent.

The reason for this seemingly bizarre world-view comes from wanting to be
able to analyze very large networks. In a ubiquitous network consisting of billions
of nodes, determining “how” is intractable, while techniques for determining
consistency may remain tractable.

7 The Quandary of Observability

When dealing with configuration management – and operators in particular –
lack of observability is a common issue[9]. In the above, we are not assuming
there is any concept of a globally observable action; in particular there is no way
to observe global consistency. Agents reason on their own and in isolation. It is
quite possible that each agent manages only one operator. The definition of an

inconsistent set of operators is thus relative to the observer. Suppose, e.g., that
each operator is applied by a different agent. It is plausible that one agent would
discover an inconsistency that another could not observe, because the agent only
sees that its own operator does not approach a fixed point.

As an example of this, consider a simple case in which one operator O1

mounts an external filesystem and another operator O2 establishes a web server
on it. Suppose that the agents applying these operators cannot otherwise com-
municate. Suppose further that O1 never achieves a fixed point, perhaps because
the filesystem it desires to mount is improperly exported. Then from the point
of view of O2, the set of operators is inconsistent, while from the point of view
of O1, it is still consistent, because O1 has never been able to observe any in-
consistency. The fact that its poor view of the world results from its own lack of
capability is not of consequence in the definition of consistency.

We handle this quandary as follows. The agents for which consistency is
observed (by approaching a common fixed point) are the “haves”, while the
agents that never achieve a fixed point are “have nots”. An agent who – from its
own point of view – has achieved its aims, has no problems. It is the “have nots”
that need to work on different strategies to achieve their aims. In any sufficiently
complex system, there will always be some “have nots”; the goal is to minimize
these and not allow them to dominate the network.

8 Synchronous Operator Activation

Our first exploration is to understand what happens in an environment in which
operators can be applied in an ordered (synchronous) fashion. Results for syn-
chronized clocks mimic the results in [6], except that non-emergence of order is
now a distinct possibility.

Theorem 1. Suppose that n single-step operators O1, . . . , On are to be applied
in sequential order. Suppose that the longest precedence chain in the n operators
consists of k operators. Suppose that one repeats the sequence k times for a total
of nk invocations. If there are no external effects, and a common fixed point has
not been reached for all operators, then the operators are inconsistent.

Proof. This is in essence the same result as stated in [6], except that this theorem
is stated in converse form and adds the constraint that there are no more than
k operators in any one chain of precedences.

The key to the theorem is that nk invocations contain all k! permutations of
the k operators in each precedence chain. Thus after nk invocations, all permuta-
tions have been tried, and if a fixed point has not been reached, then there is no
permutation that produces consistency, and we can conclude that the operators
are not consistent.

To demonstrate this claim, note that in each of k blocks comprising n steps,
all n operators are tried. Thus one can construct an arbitrary permutation by
choosing one operator from each block of n invocations. Thus nk iterations are
sufficient to try all permutations. 2

It is important in the above proof that there are no functioning external
operators about which one has no knowledge. If one is testing the consistency
of {O1, O2, O3} and – unbeknown to us – an operator O4 inconsistent with this
set is sporadically being applied, then one may conclude erroneously that the
set is inconsistent, even when it is consistent. However, the theorem’s conclusion
remains accurate if an unknown operator that is consistent with the set is being
applied sporadically. This does not interfere with the theorem’s inference in the
same way as an inconsistent operator would.

We sidestep this issue in the following sections by changing the way opera-
tors are applied. If all operators are applied in the same fashion, and there are
unknown operators being applied, then inconsistency is a property of the whole
set of operators, not just those that are known. It is not necessary to know how
many operators there are and what they are doing in order to know whether they
are consistent or not. This is a fundamental strength of this form of analysis.

9 Heartbeats and Time

To apply the emergent ordering principle in the distributed case, we must define
what time means in a distributed system. Our definition differs from that of
Lamport[10] and researchers involved in distributed performance analysis; we
have no need to synchronize the actions of agents.

To define our notion of time, we assume that there is a “heartbeat rate”
λ at which, on average, all operators are applied to the network repeatedly.
We assume that the time between applications of the same operator follows an
exponential distribution with mean 1/λ and standard deviation 1/λ. As a result,
operator application is memoryless, in the sense that future frequency of operator
invocations does not depend in any sense on past behavior. For now, we assume
that the process of applying each operator is asynchronous from applying any
other and that all operators share the same application rate λ.

The astute reader will realize that this model matches CFengine’s[11–13]
model of operator application; the operators are applied periodically to “immu-
nize” the system against adverse effects[14, 15]. As in Cfengine, it is not possible
to assure that an operator occurs at a specific time, but one can assure the sta-
tistical behavior of an operator as it is applied over time. Our statistical model
is chosen arbitrarily and is neither important nor essential, but it is convenient
for the arguments that follow. Any other model of operator invocation can be
substituted without changing the character of the following results.

10 Fixed Points and Time

The purpose of the “heartbeat” is to provide a coordination point for agents
without requiring them to communicate. If an agent does not apply an operator
at the “heartbeat” time, it is presumed to be down or out of compliance. It is
not necessary for the heartbeat to be seen by an agent; one can observe its effect.
The reason for this is the following:

Theorem 2. Suppose we have a set of n single-action operators, repeatedly ap-
plied to a network at the same rate λ, where inter-arrival times are exponen-
tially distributed. Suppose that in these operators there are chains of precedence
of at most length k. Then the probability that the operators are consistent af-
ter time t, given that the network has not achieved a fixed point, is less than

1 − (1 − e−λt/k)
nk

, which approaches 0 as t → ∞.

Proof. The proof utilizes Bayesian relationships between several hypotheses. Let
t represent elapsed time since the reference time t0 at which operators began to
be applied. Let H be the hypothesis that the operators are consistent, let R(t)
be the hypothesis that all operators have been repeated in all permutations at
time t, and let F (t) be the hypothesis that a fixed point for all operators has
been observed at time t.

At the outset, no operators have been applied, and we have no information
about the likelihood of H except for its relationships with the other hypotheses
R(t) and F (t), for which we also initially have no information.2 Clearly, F (t)
implies H and – since F (t) can only be observed over time – the probability
Prob(H) that the operators are consistent is a time-varying quantity.

If at a particular time t, R(t) is true, and F (t) is false, then H is false by
Theorem 1. Thus R(t) ∧ ¬F (t) → ¬H .

Now suppose at a particular time t that F (t) is false. It follows that the only
way that H can be true is if R(t) is false; otherwise H is false by the above. Thus
Prob(H |¬F (t)) ≤ Prob(¬R(t)) = 1 − Prob(R(t)). The reason for the inequality
is that R(t) is sufficient but not necessary to disprove H . One might be able to
infer that H was false long before R(t) is true, e.g., by observing two operators
conflicting over a short time.

Prob(R(t)) is difficult to compute, but we can bound it by approximation.
Consider the hypothesis S(t) which represents that all n operators have been
applied each t/k seconds, so that each operator has been applied k times in
t seconds. By Theorem 1, S(t) → R(t), so Prob(S(t)) ≤ Prob(R(t)) and 1 −
Prob(S(t)) ≥ 1 − Prob(R(t)).

To understand this relationship, consider the Venn diagram in Fig. 1. The
circles in the diagram represent overlaps in probability space. If one hypoth-
esis implies another, this is a containment relationship. In our case, we know
that S(t) ∧ ¬F (t) → R(t) ∧ ¬F (t) → ¬H , which is depicted as a containment
relationship between their probability masses.

The probability of S being true, unlike that of R, is easily computed. The
probability of S(t) with respect to elapsed time t is the result of k independent
sets of events, each of which are composed of n independent events, where each
event has probability (1 − e−λt/k). Thus the composite probability of these nk

events is Prob(S(t)) = (1 − e−λt/k)
nk

, and we conclude that at time t,

Prob(H |¬F (t)) ≤ 1 − Prob(R(t)) ≤ 1 − Prob(S(t)) = 1 − (1 − e−λt/k)
nk

2 One reviewer felt that the estimates would be greatly improved by use of a priori
estimates of the likelihood of H. We agree, but at the outset of this process, we have
no such information.

Fig. 1. If all permutations of operators have been tried and a fixed point was not
observed (R ∧ ¬F), then the set of operators is inconsistent (¬H), but this is not the
only way to prove ¬H.

The exponential dominates the constant power, so this quantity approaches 0 as
t → ∞. 2

In the theorem, n is the number of operators and k is the maximum depen-
dency between them. In regular practice, the number of operators managing a
network might be in the thousands, while the dependencies between them remain
rather limited; an average service depends on at most 10 others.3

The practical uses of this theorem are easier to describe than the theorem.
By assumption, all operators try to operate on average once each 1/λ seconds.
There is a precedence chain of length k, where n is the number of operators. In
this case,

1. After time 1/λ, on average, one has operated.
2. After time 2/λ, on average, a second has operated (depending upon the

first).
3. . . .
4. After time k/λ, on average, the last in the chain has operated.

On average, within time kλ, a set of operators is either proved consistent or there
is enough evidence of inconsistency to safely assume that the set is inconsistent.

The key to the usefulness of this theorem in practice is that the agent dis-
covering the inconsistency is exactly the agent whose operators should change to
react to it. If an agent has been listening for time t, and can be 99% sure that the
current set of operators is inconsistent, then it can act to preserve consistency. If

we want Prob(¬H) ≥ .99, we know that is true if (1 − e−λt/k)
nk ≥ .99. In turn,

this is true when t ≥ −k · ln(1 − nk
√

.99)/λ. In general, .99 can be replaced with

3 This estimate is based on the combined system and network administration experi-
ence of the authors, and is roughly the maximum depth of dependencies exhibited
in software packages for Linux distributions.

any confidence limit. A graph of time versus confidence for λ = 1, k = 10, and
n = 10, 20, 30 is shown in Fig. 2. An alternate view is shown in Fig. 3.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ti
m

e
(λ

 =
 1

 H
z

)

Prob(¬ H)

n = 10
n = 20
n = 30

Fig. 2. The probability of inconsistency over time, given that a fixed point has not
been observed, for sets of n = 10, n = 20, n = 30 operators containing no precedence
chain over k = 10 operators long.

Note also that the construction of the theorem is invariant of the particular
distribution of operator invocations:

Corollary 1. If invocations of operators in Theorem 2 are distributed according
to a cumulative distribution function c(t) (rather than the exponential distribu-
tion), and invocations are independent events, then the probability that the oper-
ators are not consistent at time t, given that consistency has not been observed,
is less than 1 − c(t/k)

nk
.

Proof. Substitute c(t) for the exponential cumulative distribution function 1 −
e−λt in the proof of Theorem 2. 2

Note that in our model, a security violation is modeled as an operator; it is
just like any other operator, except that we do not have knowledge of its contents.
It is typical for such an operator to introduce inconsistencies in policies, by trying
to assert states that other operators attempt to prevent. Since our model does
not require codification of the intent of each operator, it can be used to model
effects of security violations without knowing the exact effect of a violation.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40

Ti
m

e
(λ

 =
 1

 H
z

)

Number of Operators n

90% confidence
99% confidence

99.9% confidence
99.99% confidence

Fig. 3. Time taken to disprove H, given that a fixed point is not observed, for a
precedence chain limit of k = 10 and increasing numbers of operators.

Thus it is possible to model a security violation as the emergence of disorder in
a previously ordered environment.

11 Multiple Time Bases

The assumptions in Theorem 2 are still too limiting for most practical cases. For
example, we assume in Theorem 2 that all operators are applied at the same
rate. The case in which different operators are applied at different rates is easy
to handle:

Corollary 2. Suppose operators O1, . . . , On are applied at rates λ1, . . . , λn and
that λ = min(λi). Then Theorem 2 applies to this system with rate λ and, given
that a fixed point has not been observed after time t, the probability that the set

of operators is consistent is less than 1− (1 − e−λt/k)
nk

, which approaches 0 as
t → ∞.

Proof. Exponential inter-arrival rates are additive; e.g., a process that is the
sum of two rates λa and λb has a composite rate that is the sum λa + λb. Thus
every operator Oi is applied at a rate λ plus (additionally) a rate λi − λ > 0.
The extra rate does not improve the results of Theorem 2, but it does not hurt,
either. Repeat the proof of Theorem 2 to obtain the result. 2

Thus a “common time base” assumption can be utilized without harm for the
slowest rate in a set of rates.

12 Bounded Operators

Suppose we have a set of operators that are not single-step, but instead are
guaranteed to find a fixed point in at most L steps, where L is a constant. We
can still predict the time at which they will become stable, if any, as follows:

Corollary 3. Suppose operators O1, . . . , On achieve fixed points in at most L
steps each. Then we can model this system as containing nL operators, and the
probability that the operators are consistent, given that consistency has not been

observed after time t, is 1− (1 − e−λt/k)
nkL

, which approaches 0 as t → ∞.

Proof. Model each operator that achieves a fixed point in L steps as L separate
operators, one per step. Apply Theorem 2 to the resulting set of nL operators
to obtain the result. 2

Corollary 4. Suppose every operator Oi has a different constant limit Li. Let
L be the maximum of the Ki. Then the result of Corollary 3 holds for L.

Proof. Model each operator in the base set as L operators in a new operator
set, where some of these are identity operators. The proof above then applies
without change. 2

Note that these bounds are loose and can be easily tightened. The important
point of these corollaries is that these bounds – and even tighter bounds – are
easy to compute.

13 Conclusions

In this paper, we turn the problem of analyzing policy consistency somewhat
upside-down, viewing consistency as an emergent property of a self-organizing
system of operators that try to implement policy. We demonstrate that there
are Bayesian hypothesis-testing techniques that aid one in determining whether
consistency is present, and discuss their limitations. But this is just the tip of a
much larger iceberg.

First, the Bayesian inference techniques we use are just a small part of the
true Bayesian lattice of hypotheses for the problem. We are only considering
one way of analyzing the hypotheses, based upon one path through the lattice,
and are only concentrating upon upper bounds for consistency hypotheses. The
theorems in this paper can be thought of as “existence proofs of upper bounds
on the probability of hypotheses”. These are extremely conservative bounds and
ignore much information that might be available. There are many other statis-
tical relationships yet to be explored, and the bounds described herein are not
optimal.

Second, it is relatively straightforward (though laborious) to extend these
results to test whether a new operator is consistent with an existing fabric of
operators. This gives the individual agent the ability to make reasoned choices as
to whether it should change its management strategy (by changing the operators
that it applies). This requires precisely defining the hypotheses to be tested from
an individual agent’s point of view, and is left for future work.

One impact of this work is that autonomous agents can use bounds in their
reasoning processes that have a reasonable mathematical meaning. This paper
shows how – in deciding upon a course of action – an agent can determine when
it has waited “long enough” for external events. This is a small first step toward
reasoning processes with strong statistical properties.

14 Acknowledgments

This paper draws its inspiration from the AIMS community, including Mark
Burgess, Jan Bergstra, and many others.

References

1. Burgess, M., Couch, A.: Autonomic computing approximated by fixed-point
promises. In: Proceedings of the First IEEE International Workshop on Mod-
eling Autonomic Communication Environments (MACE), Multicon Verlag (2006)
197–222

2. Couch, A., Chiarini, M.: A theory of closure operators. In: AIMS. (2008) (submit-
ted)

3. Burgess, M., Couch, A.L.: Modeling next generation configuration management
tools. In: LISA, USENIX (2006) 131–147

4. Anderson, P.: Configuration Management. SAGE Short Topics in System Admin-
istration. USENIX (2007)

5. Couch, A.: Configuration management. In Bergstra, J., Burgess, M., eds.: Hand-
book of Network and System Administration. Elsevier, Inc. (2007) 75–133

6. Couch, A.L., Daniels, N.: The maelstrom: Network service debugging via ”ineffec-
tive procedures”. In: LISA, USENIX (2001) 63–78

7. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management.
IEEE Trans. Software Eng. 25(6) (1999) 852–869

8. Dunlop, N., Indulska, J., Raymond, K.: Dynamic conflict detection in policy-based
management systems. In: EDOC, IEEE Computer Society (2002) 15–26

9. Couch, A.L., Sun, Y.: On observed reproducibility in network configuration man-
agement. Sci. Comput. Program. 53(2) (2004) 215–253

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7) (1978) 558–565

11. Burgess, M.: A site configuration engine. Computing Systems 8(2) (1995) 309–337
12. Burgess, M., Ralston, R.: Distributed resource administration using cfengine.

Softw., Pract. Exper. 27(9) (1997) 1083–1101
13. Burgess, M.: Theoretical system administration. In: LISA, USENIX (2000) 1–13
14. Burgess, M.: Computer immunology. In: LISA, USENIX (1998) 283–298
15. Burgess, M.: Cfengine as a component of computer immune-systems. Proceedings

of the Norwegian Conference on Informatics (1998)

