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Background
 We can describe network management 

policies as sets of convergent operators.
 Sets of operators can approximate autonomic 

computing (by encapsulating control loops 
inside operators).

 This is the theoretical basis for Cfengine.



Fixed point operators
 We define a fixed point as a clearly defined, stable, 

and policy-conformant state.
 A fixed point operator moves system state toward a 

fixed point, or leaves it unchanged if it is at a fixed 
point. 

 A fixed point process is a series of invocations of one 
or more fixed point operators. 

 Example: removal of unwanted rain-water.
 Catch and remove individual raindrops (ECA).
 Equip all streets with drains and gutters (FPRD).



Consistency
 Centralized management strategies require 

defining overarching policies.
 Reasonable policies are consistent, in the 

sense that they do not contain contradictions.  
 In the case of convergent operators, 

the set of active operators is the policy. 
 Then what does consistency mean?



A controversial claim
Logical consistency is a useless concept in a 
ubiquitous computing network, because:
Operators can implement fixed points as 
algorithms rather than as rules.
Codifying the results of the algorithms as rules 
may be impossible for sufficiently complex 
and/or non-deterministic algorithms.
One cannot have complete knowledge of the set 
of operators in effect.



A new “consistency”
Instead, we need emergent consistency:
 Consistency of operators is an emergent 

property of their application. 
 A consistent set of operators converges to a 

common fixed point.
 We call this reachable consistency.
 Inconsistent sets of operators oscillate between 

conflicting fixed points.



Reachability
 It is possible that reachability varies with 

system state, i.e., the starting point for 
operators. 

 Operators can be reachably consistent even if 
we don’t know about all of them. 

 If a set of operators is consistent in isolation, 
and is not consistent when deployed, then 
another unknown operator is present.



Exists vs emerges
 In traditional policy theory, consistency is a 

property that either exists or does not exist. 
 In our theory, consistency either emerges or 

fails to emerge. 
 Thus it is a time-varying phenomenon. 
 Purpose of this paper: discuss when 

consistency should emerge, and with what 
probability. 



Single-step operators
 To begin, let’s study perhaps the simplest kind of 

operator. 
 A convergent single-step operator does one of two 

things: 
 Leaves any acceptable state alone without change. 
 Changes any unacceptable state to an acceptable state. 

 In other words, all single-step operators o are 
idempotent: o(o(X))=o(X) for target system X. 



Emergent consistency
 Suppose we execute each of n fixed-point 

single-step operators once, in sequence. 
 Then if consistency is not present, it will be 

present. 
 Reason: if any operator is not at its fixed point, 

then there must be a conflict. 



Probabilistic execution
Suppose that:
 We have n convergent, single-step operators. 
 Operator invocations are independent.
 The probability that each operator has been applied 

by time t is 1-e –λt (memoryless, exponential inter-
arrival times).

 At time t, we have observed that some operators have 
not achieved a fixed point.

Then: 
 Prob(operators consistent at time t) ≤ 1 – (1-e–λt)n.



Proof
 If the operators are consistent, then some 

operator must not have been applied yet. 
 (operators consistent) → ¬(all operators 

applied) 
 Thus Prob(operators consistent) 

≤ Prob(¬(all operators applied)) 
= 1-Prob(all n operators applied) 
= 1-(1-e–λt)n (since operator invocations are 
independent).



Subtleties of this approach
 This is not classical hypothesis testing. 
 It is a simple result of implication: 

If for hypotheses A and B, A→ B: 
then States(A) ⊆ States(B) 
and thus Prob(A) ≤ Prob(B).

 This allows one to bound probabilities. 
 Bounds are not tight, but may be useful 

nonetheless. 



In practice
 As time passes and consistency has not been 

observed, the probability of inconsistency 
increases.

 The previous result allows us to know when to 
stop waiting for consistency to emerge.



Precedences
 Suppose we have n fixed-point operators with 

precedences between them. 
 E.g., a package cannot be configured until it is 

installed.  
 Each operator checks for its preconditions and does 

not become operative until they are satisfied. 
 The system achieves a fixed point if all operators 

eventually become operative and idempotent. 



Emergent ordering of 
precedences

 Suppose you have n single-step fixed-point 
operators with precedences, and you execute 
the sequence of n operators n times. 

 Then if consistency has not emerged, the 
operators cannot be consistent. 

 Key to proof: “Maelstrom Theorem”. 



The Maelstrom Theorem
 If n operators are aware of their dependences, then 

all dependences are satisfied in at most n2 operator 
invocations. 

 Idea of proof: n=4, any permutation of four operators 
is contained in four sequences of four operators:

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
^ ^ ^ ^                         1234
^ ^   ^     ^                   1243
…

^     ^     ^     ^       4321



Stochastic invocations
Theorem: suppose that: 
 We have n fixed-point operators with 

precedences. 
 Each operator is invoked repeatedly with 

exponential inter-arrival times with mean inter-
arrival time λ.

 Then if consistency has not been observed at 
time t, then Prob(operators are consistent) 
≤ 1-(1-e –λt/n )n*n



Proof(1)
 Suppose we have observed that no fixed point 

has emerged at time t. 
Then: 
 All operators applied each t/n seconds
→ All permutations have been tried 

(by maelstrom argument)
→ Operators not consistent. 



Proof(2)
 Suppose we have observed that no fixed point 

has emerged at time t. 
Then: 
 Prob(All operators applied each t/n seconds)
≤ Prob(all permutations have been tried) 
≤ Prob(operators not consistent).



Proof(3)
 But 

Prob(all operators applied each t/n seconds)
= (1-e –λt/n )n*n  (invoking independence).

 So Prob(operators consistent) ≤ 1- (1-e –λt/n )n*n 



The big deal
 As t→∞, Prob(consistency)→0, and one can 

decide when to give up on consistency!



Title



Applying the maelstrom theorem

 Suppose we have n single-step operators with 
precedence chains of at most k operators. 

 Suppose we apply all operators at rate λ with 
exponential inter-arrival times. 

 Suppose we observe at time t that consistency has not 
been achieved. 

 Then Prob(operators are consistent) 
≤ 1-(1-e –λt )kn

 Idea of proof: as before, bound by implication. 
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