Dynamic Consistency Analysis for Convergent Operators

Alva L. Couch and Marc Chiarini
Tufts University
{couch,mchiar01}@cs.tufts.edu

Overview

- Background
- Fixed-point operations
- Emergent consistency
- Practical considerations
- The Maelstrom Theorem
- Summary

Background

- We can describe network management policies as sets of convergent operators.
- Sets of operators can *approximate autonomic computing* (by encapsulating control loops inside operators).
- This is the theoretical basis for Cfengine.

Fixed point operators

- We define a *fixed point* as a clearly defined, stable, and policy-conformant state.
- A fixed point operator moves system state toward a fixed point, or leaves it unchanged if it is at a fixed point.
- A fixed point process is a series of invocations of one or more fixed point operators.
- Example: removal of unwanted rain-water.
 - Catch and remove individual raindrops (ECA).
 - Equip all streets with drains and gutters (FPRD).

Consistency

- Centralized management strategies require defining overarching policies.
- Reasonable policies are consistent, in the sense that they *do not contain contradictions*.
- In the case of convergent operators, the set of active operators is the policy.
- Then what does consistency mean?

A controversial claim

Logical consistency is a useless concept in a ubiquitous computing network, because:

- •Operators can implement fixed points as algorithms rather than as rules.
- •Codifying the results of the algorithms as rules may be *impossible* for sufficiently complex and/or non-deterministic algorithms.
- •One cannot have complete knowledge of the set of operators in effect.

A new "consistency"

Instead, we need emergent consistency:

- Consistency of operators is an emergent property of their application.
- A consistent set of operators converges to a common fixed point.
- We call this *reachable consistency*.
- Inconsistent sets of operators oscillate between conflicting fixed points.

Reachability

- It is possible that reachability varies with system state, i.e., the starting point for operators.
- Operators can be reachably consistent even if we don't know about all of them.
- If a set of operators is consistent in isolation, and is not consistent when deployed, then another unknown operator is present.

Exists vs emerges

- In traditional policy theory, consistency is a property that either *exists* or *does not exist*.
- In our theory, consistency either *emerges* or *fails to emerge*.
- Thus it is a time-varying phenomenon.
- Purpose of this paper: discuss when consistency should emerge, and with what probability.

Single-step operators

- To begin, let's study perhaps the simplest kind of operator.
- A convergent single-step operator does one of two things:
 - Leaves any *acceptable state* alone without change.
 - Changes any *unacceptable state* to an acceptable state.
- In other words, all single-step operators o are *idempotent*: o(o(X))=o(X) for target system X.

Emergent consistency

- Suppose we execute each of n fixed-point single-step operators once, in sequence.
- Then if consistency is not present, it will be present.
- Reason: if any operator is not at its fixed point, then there must be a conflict.

Probabilistic execution

Suppose that:

- We have *n* convergent, single-step operators.
- Operator invocations are independent.
- The probability that each operator has been applied by time t is 1-e $^{-\lambda t}$ (memoryless, exponential interarrival times).
- At time *t*, we have observed that some operators have not achieved a fixed point.

Then:

• Prob(operators consistent at time t) $\leq 1 - (1-e^{-\lambda t})^n$.

Proof

- If the operators *are* consistent, then some operator must not have been applied yet.
- (operators consistent) → ¬(all operators applied)
- Thus Prob(operators consistent)
 - \leq Prob(\neg (all operators applied))
 - = 1-Prob(all n operators applied)
 - = $1-(1-e^{-\lambda t})^n$ (since operator invocations are independent).

Subtleties of this approach

- This is not classical hypothesis testing.
- It is a simple result of implication: If for hypotheses A and B, $A \rightarrow B$: then States(A) \subseteq States(B) and thus $Prob(A) \leq Prob(B)$.
- This allows one to bound probabilities.
- Bounds are not tight, but may be useful nonetheless.

In practice

- As time passes and consistency has not been observed, the *probability of inconsistency* increases.
- The previous result allows us to know when to stop waiting for consistency to emerge.

Precedences

- Suppose we have *n* fixed-point operators with precedences between them.
- E.g., a package cannot be configured until it is installed.
- Each operator checks for its preconditions and does not become operative until they are satisfied.
- The system achieves a fixed point if all operators eventually become operative and idempotent.

Emergent ordering of precedences

- Suppose you have n single-step fixed-point operators with precedences, and you execute the sequence of n operators n times.
- Then if consistency has not emerged, the operators cannot be consistent.
- Key to proof: "Maelstrom Theorem".

The Maelstrom Theorem

- If n operators are aware of their dependences, then all dependences are satisfied in at most n^2 operator invocations.
- Idea of proof: n=4, any permutation of four operators is contained in four sequences of four operators:

```
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4
```

Stochastic invocations

Theorem: suppose that:

- We have n fixed-point operators with precedences.
- Each operator is invoked repeatedly with exponential inter-arrival times with mean inter-arrival time λ .
- Then if consistency has not been observed at time t, then Prob(operators are consistent) $\leq 1-(1-e^{-\lambda t/n})^{n*n}$

Proof(1)

 Suppose we have observed that no fixed point has emerged at time t.

Then:

- All operators applied each t/n seconds
- → All permutations have been tried (by maelstrom argument)
- → Operators not consistent.

Proof(2)

 Suppose we have observed that no fixed point has emerged at time t.

Then:

- Prob(All operators applied each t/n seconds)
- ≤ Prob(all permutations have been tried)
- \leq Prob(operators not consistent).

Proof(3)

- But Prob(all operators applied each t/n seconds) = $(1-e^{-\lambda t/n})^{n*n}$ (invoking independence).
- So Prob(operators consistent) $\leq 1 (1 e^{-\lambda t/n})^{n*n}$

The big deal

■ As $t\to\infty$, Prob(consistency) $\to 0$, and one can decide when to give up on consistency!

Title

Applying the maelstrom theorem

- Suppose we have n single-step operators with precedence chains of at most k operators.
- Suppose we apply all operators at rate λ with exponential inter-arrival times.
- Suppose we observe at time *t* that consistency has not been achieved.
- Then Prob(operators are consistent) $\leq 1 - (1 - e^{-\lambda t})^{kn}$
- Idea of proof: as before, bound by implication.