Modeling Change Without Breaking Promises

Alva L. Couch, Hengky Susanto, and Marc Chiarini

Tufts University, Medford, Massachusetts, USA

alva.couch@cs.tufts.edu, hsusan0a@cs.tufts.edu, mchiar0l@cs.tufts.edu

Abstract. Promise theory defines a method by which static service
bindings are made in a network, but little work has been done on han-
dling the dynamic case in which bindings must change over time due
to both contingencies and changes in policy. We define two new kinds of
promises that provide temporal scope for a conditional promise. We show
that simple temporally-scoped promises can describe common network
behaviors such as leasing and failover, and allow an agent to completely
control the sequence of sets of promises to which it commits with another
agent, over time. This allows agents to adapt to changing conditions by
making short-term bilateral agreements rather than the long-term uni-
lateral agreements provided by previous promise constructions.

1 Introduction

Promise theory[1-4] provides a mechanism by which one can model intelligent
autonomous service binding between clients and services. A promise has three
parts:

1. A sender s that is committing to a particular behavior.
2. A receiver r that is receiving that commitment.
3. A body b of information describing the commitment.

We can describe the promise between nodes s and r as a labeled edge (s, r,b) and
the sum total of all promises among a set of nodes as a promise graph G = (V, E),
where V represents all nodes (agents), and each edge e € E is a labeled directed
edge of the form e = (s, r,b), with source s, destination r, and label b.!
Promise theory allows one to easily characterize the function of network
services in terms of promises between entities. For example, we can describe
DNS, file service, and web service in terms of kinds of promises[5]. For ease of
notation, we utilize wildcards to denote promises to everyone: (s, x,b) means “s
promises b to every node”, while (x,r,b) means that “r is promised b by every
node.”
Prior work on promise theory identified three kinds of promises: “regular”,
use”, and “coordination”. A regular promise is a commitment to provide some

[43

1 We find it instructive to utilize the notation of traditional graph theory, instead of
the labeled arrow notation introduced by Burgess et al. This notation allows us to
construct derived graphs with a simple notation.

service (e.g. b), while a use promise is a commitment to use some service (e.g.,
U(b)). A “coordination promise” obligates one agent to follow the “instructions”
given by another agent (e.g., C'(b)). In addition, a “commitment promise” [2] is a
special kind of promise body b representing the commitment of a non-returnable
investment. In this paper, we do not consider commitment promises, and use the
term “commitment” to refer more generically to any promise made.

Recently, conditional promises were introduced in order to encode simple
interactions between promises[3,6-8]. A conditional promise is a promise that is
contingent upon the validity of other specified promises.

Definition 1. A promise is primitive if it consists of a single promise body,
transmitted from a single originator to a single recipient, with no conditions
stated.

A conditional promise is a promise that is held by an agent, but whose validity
is contingent upon the validity of other stated promises[1]:

Definition 2. A conditional promise has the form (plqi,q2,...,qx) where p
is a consequent primitive promise and qi,qo,...,qr are antecedent primitive
promises.

A primitive promise p can be thought of as a conditional promise (p|) with an
empty set of antecedents. In the above definition, each of p and ¢1,..., gy are
promises with sender, receiver, and body, e.g., ¢i = (Sqi, 7qi, bgi)- At this point,
the values of sg4;, 74;, and by; are unconstrained, though we will discuss later
what it means for such a promise to be meaningful in the context of a particular
agent.

The purpose of a conditional promise (p|gi,...,qr) is to state conditions
under which a consequent promise p is considered to be valid. To make discussion
easier, we will refer to a promise that is valid in a particular context as operative
in that context, and a promise that is not valid as inoperative. A promise that
is not valid but could potentially become valid in the future is latent.

Axiom 1. All primitive promises in a set C are operative with respect to C'.

Axiom 2. A conditional promise ¢ = (p|qu, ..., qx) is operative with respect to a
set of conditional promises C precisely when each of q1,...,qr is operative with
respect to C.

Definition 3. For a conditional promise ¢ = (plqi, - .., qxk), we say p is operative
(with respect to C') whenever ¢ is operative (with respect to C).

A conditional promise describes one way that a primitive promise can be-
come operative. It can also become operative, e.g., by being promised explicitly
and unconditionally, or by being a consequent of some other conditional promise
whose antecedents are operative. Thus the conditional construction is sufficient
but mot necessary; it is quite possible that the consequent of a conditional be-
comes operative by means other than that particular conditional.

One simple extension of basic conditional promises allows conditional promises
to express arbitrary zeroth-order logical statements inside conditions as sets of
simple conditional promises.

Definition 4. If p is a promise, then the promise —p is the assertion that p is
not operative, which is operative exactly when p is not operative.

Theorem 1. A conditional promise involving any of the logical operators —
(implication), < (equivalence), A (conjunction), V (disjunction) or & (exclusive-
or) in the condition can be represented as a set of conditional promises of the
above form.

Proof. Note first that conditional promises are conjunctions: (p|qi, ..., gx) means
(plgi A+ - - Agx). Disjunctions are represented by sets of promises: The single con-
ditional (p|g1 V qx) is equivalent to the set of conditionals {(p|q1),..., (plgr)}
Exclusive-or is represented as a set of alternatives: (plg @ r) means {(p|g A
=), (p|=gAr)}. Implication (p|g — r) means p|—¢Vr, which expands to {(p|—q), (p|r)}.
Equivalence is similar. a

In this paper, we intentionally avoid first-order logical constructions such
as quantifiers and variables. One reason for this is that we seek to extend the
capabilities of the configuration management tool CFEngine[9-13], which con-
tains only the ability to interpret zeroth-order logical expressions[14]. Another
reason for excluding quantifiers is that a condition that uses quantification over
a finite, known set is logically equivalent to a set of zeroth-order condition-
als: if S = {s1,...,8,}, then the set {(p|V(z € S)z)} is equivalent to the set
{(p|s1,--.,5n)} (which we can notate as (p|S) without ambiguity), while the set
{p|3(x € S)x} is equivalent to the set {(p|s1), (p|s2),.-., (p|sn)}. Thus, we can
express a first-order condition involving quantification over finite sets of promises
as a finite set of conditional promises in our notation.

2 Related work

Burgess et al. continue to refine promise theory and its domains of applicability.
The basic framework above was described in [1], including conditional promises.
We differ from this view in one important respect: Burgess suggests that tem-
poral logic cannot be used due to lack of knowledge of prerequisites. We show in
this paper that a simple concept of sequencing, based upon mutual observability,
is sufficient to allow simple kinds of temporal constructions.

[2] explores the use of voluntarily collaborating agents to perform system
administration tasks in an uncertain environment with minimal trust. We agree
with these conclusions, but also believe that more trust is possible with the
addition of new kinds of promises, described here.

[4] contrasts promise theory with traditional control theory and introduces
the notion of promise reliability (probability that a promise will be kept) to
reduce promise graphs and enable spectral analysis of relationships. This is one
approach to understanding evolution of services; our model is complementary to
this and involves hard bindings that change over time.

In [7], Bergstra and Burgess apply promise theory to modeling trust relation-
ships, reputation, and expectation. Their discussion of how bundled promises

(made in parallel) should affect trust includes an XOR scenario in which mutu-
ally exclusive conditional promises act like a switch. This inspires our temporal
operators, which are used in a similar manner.

In [3], Burgess and Fagernes introduce the Common Currency Equivalent
Graph and extract eigenvectors from its matrix representation to determine the
sustainability of network policy. The paper remarks on chains of conditional
promises requiring an external mediating component to act as a broker. This
informs our own ideas regarding knowledge binding.

Note that while we add operators that allow a new kind of dynamic scoping,
at any particular time, our promise network is reducible to one in which the
scoping operators do not appear. Thus all prior results apply, except that the
“hard bindings” in our networks can change over time.

There has also been much work on how promises can be reasoned about
within an agent. This requires a policy that is (regardless of representation)
equivalent to a set of first-order rules[15]. While this is an important topic, we
avoid specifically describing policies here, and concentrate instead on what a
particular set of promises means, and how that meaning can evolve over time,
regardless of “why” specific promises were made or what policies caused them
to be promised.

3 Temporal scoping

One limit of prior promise theory is that although one can prove that a set of
promises creates a functional network, there is no mechanism by which promises
can change over time except by “breaking promises”. A “broken promise” occurs
when an agent promises something contradictory to a prior promise. The receiv-
ing agent may consider this as evidence of untrustability in its trust model[7].
Thus promise-based networks evolve toward a state of stability that is immutable
unless agents break their promises.

Then how do promise networks react to changes in policy and needs? At
present, the only way an agent can be ready for change (without explicitly break-
ing promises) is to fail to commit to a particular course of action. For example, if
an agent X is offered the same service from servers A, B, and C', and X commits
to use one exclusively, then it is implicitly promising — forever — not to use the
others, until it breaks that promise. Thus the agent must maintain relatively
weak bindings with others in order to remain ready to change bindings without
breaking promises. This means, in turn, that the potential servers A, B, C' can
never know client X’s full intent; even if X intends to use A exclusively, it cannot
make that intent clear unless it also — in the future — potentially issues a con-
tradictory promise. Agents unable to promise to use services represent points of
instability in a network, rather than points of stability. A new notion is needed,
that allows an agent to be predictable (and commit to a particular course of
action) for some period of time and then make choices about future action.

3.1 aand T

In this paper, we suggest two mechanisms for “scoping” promises in time by
means of two new promise bodies. The promise body 7(t) is operative from the
time that it is received to the time ¢ time units in the future. The promise body
a(p) is operative from the time it is received to the time that primitive promise p
becomes operative (Figure 1). If p is already operative then «a(p) never becomes
operative.

a
(@ plT(1)
. 1s .
—_———
1 o0
—_—
0
(b)
ap)
1 A ©
—_—
0
© amp)
1 A o
—_—
0

Fig. 1. Temporal scoping. (a) The 7 promise is given such that p is operative for one
second. (b) The « promise is operative until p becomes operative. (¢) The « of a negated
promise p is operative until p becomes non-operative.

To simplify notation, we often omit details that can be inferred from context.
Since « and 7 only make sense in conditional promises, it is implicit that their ini-
tiator is the sender in the consequent and that their receiver is the receiver in the
consequent. Thus we will write ((s,r, b)|a(p)) to mean ({s,r,b)|(s,r,a(p))) and
({(s,r,b)|7(t)) instead of ({s,r,b)|(s,r,7(t))). Thus we will refer to the promises
a(p) and 7(t) without confusion.

7 and « allow one to make conditional promises whose consequents are oper-
ative for a limited time. The promise (p|7(t)) means that p is operative for time
t, and then inoperative thereafter. Likewise, the promise (p|a(gq)) means that p
is operative until replaced by a “presumably better” promise g.

This means, in particular, that any promise containing an (unnegated) a or 7
condition may be permanently deleted from an agent’s knowledge base after the
state transition from operative to inoperative has been accomplished. In other

words, (pla(q)) and (¢|7(t)) (and any conditional promises containing them)
have a limited lifetime that is the temporal scope implied by their conditionals.
Once « and 7 become inoperative, they never become operative again, and any
promise they condition can be forgotten forever.

Conversely, any promise containing the negation of an « or 7 construction
cannot become operative until the clause is fulfilled. (p|—a(g)) means that p
becomes operative only when ¢ has become operative. Likewise, (p|—7(¢)) means
that p becomes operative after time ¢. This means that after any negation of «
or 7 becomes operative, it can be omitted from the conditional expression that
contains it from then on.

Combining negative and positive temporal operators allows one to specify
any scope whatever in time. For example, (p|—=7(¢1), 7(t2)) means that p becomes
operative from the time ¢; units in the future, until the time ¢5 units in the future.
Likewise, (p|—a(q), a(r)) says that p becomes operative from when g becomes
operative, to when r becomes operative.

3.2 Leasing

Several simple examples can illustrate the utility of a and 7 in modeling common
service binding behaviors. A lease is a time-limited promise. The use of a lease
is — in turn — similarly limited in time. Let us model a typical DHCP lease in
promise theory:

1. The client requests a lease. Requests are not promises.
2. (s,c,b)|T(t), (c,s,U(b)): each server responds with a time-limited offer.
3. {¢,s,U(b)|7(t): the client responds to one server with an acceptance.

(See Figure 2a).

3.3 Gating

Another common situation is that a client wants to commit to a service until it
decides to do otherwise. We can accomplish this via an “abstract” promise. An
abstract promise has a body that has no behavioral effect nor any effect upon
commitment except to gate a condition. Let us rewrite the leasing example to
be gated instead:

1. The client requests a lease.

2. (s,c,b)|{c,s,U(b)): each server responds with a conditional offer.

3. {¢,s,U(b))|a({c, s,n0t)): the client responds with a gated acceptance, where
the abstract body “not” represents the promise that ends the commitment.

4. {c, s,n0t)|7(0): the client, when it wishes to disconnect, issues a “gate promise”.

The last is a promise that becomes operative and non-operative at a single time,
thus nullifying « in the previous promise (and, in doing so, nullifying the entire
promise) but becoming inoperative itself immediately after (Figure 2b). Note

that gating can be coded in either direction. One could, e.g., allow the server to
renege instead of the client, via:

(c,s,U(b))|a({s, c,not))
or even allow either to unilaterally back out of the agreement, via:
(¢, s, U(b))|a({c, s,not)), a((s, ¢, not))

A gated promise avoids “breaking promises” by declaring in advance which
promises will become inoperative, and the events that will make them inop-
erative.

(a) (b)

I | T(t),U(h) 91| U(g1)
U | 1(t:) U(g))| afnot) not | 7(0)
BN 5 5

I B I I I
0 ! : 0

LItV %1 U(g)
1 A 1 :
0 B R B 0

Fig. 2. (a) Lease (promise) /; is operative, conditioned on a use promise and the time
being less than the current time plus ¢;. Lease [2 never becomes operative. (b) Gating.
Promise g1 is operative until such time as its recipient decides otherwise. g2 never
becomes operative.

4 Observability and knowledge

Before we can utilize timing and gating in more complex situations, we need
to grapple with exactly when « and 7 conditions make sense. A key element of
promise theory is that an agent only has access to the promises that it makes
and receives. In the above examples, it is clear what « and 7 mean, because they
involve only two servers with some concept of shared knowledge, but in more
complex constructions, one must be careful not to write conditional expressions
with no reasonable meaning. The constructions that are meaningful are those
in which the agents involved in a promise transaction can mutually observe the
outcome of the transaction. This is an extension of the principles of observability
discussed in [16].

Consider, first, the case of one agent X making a promise conditioned by 7(t)
to another agent Y. The outcome of this promise is trivially mutually observable,

because both agents can start a clock and make the promise inoperative after
time ¢. No further communication is necessary in order to observe the effect.

In this paper, we assume that there is “reliable communication” between
agents. Thus, if an agent sends a promise to another, that promise is guaranteed
to be received. We are aware that this assumption is not made in most of current
promise theory. But it is a valid assumption in many of the networks that promise
theory attempts to model.

4.1 Observing o

Now consider the more complex case of a(p). This promise is not mutually
observable unless it is made between a sender and receiver that match those in
p = (s,r,b). ({s,r,ba)|a({s,r,b1))) and ({r,s,b2)|a((r,s,b1))) make sense, but
mentioning promises in « involving any external agent not equal to s or r does
not make sense.

In general, it makes little sense for an agent to promise something condition-
ally unless it already holds a guarantee sufficient for it to believe that it can
observe the conditions itself and thus know whether the promise is binding or
not. Likewise, it makes little sense for the receiving agent to agree to react to a
change in state unless it can observe the change whenever it occurs.

Definition 5. A promise (s,r,b) is observable by an external agent x not equal
to r or s if x holds sufficient promises to be able to determine with certainty
whether (s,r,b) is operative in r (and s).

Obviously, «(p) is observable exactly when p is mutually observable between
sender and receiver.

4.2 Knowledge and k

But how can an agent = learn of a promise between two other agents s and r?
By definition, this is a communication between s and r with no intermediary.
There is no standard mechanism other than to embed the promise in a body of
another promise between some agent and .

Definition 6. Given a promise p = (s,r,b), the promise body k(p) means that
“I will provide knowledge of whether the promise p is operative.”

It is reasonable for either s or r to communicate this information to a third party
z; e.g., the promises (s, z, k((s,r,b))) and (r, z, k({s,r,b))) are both reasonable?.
K represents an offer to communicate this information, while U(k({s,r,b))) rep-
resents a commitment to interpret this information. Further, once promises x(p)
and U(k(p)) have been exchanged by a server agent x and a client agent y, it
makes sense for conditional expressions sent from x to y to contain a(p), even
though p may not involve x and y.

2 Note that this information is similar to a “reification” in a resource description
framework, and is of the form “s claims that (s,r,b) holds.”

The addition of k makes it possible to scope promises based upon knowledge
of those made between other agents, in particular, o(p) makes sense as a con-
dition even if p is not a promise to the recipient. It is important to remember,
however, that without a commitment to report ongoing state of an agent s to
an agent x, r cannot be sure that it is completely aware of the relevant state
of s. Likewise, an agent x receiving such information, unless it agrees to use it,
cannot be expected to react to it.

Note that unlike a(p), which is abstract, x(p) and U(x(p)) are promises that
make sense as consequents, and do not concern the state of p, but rather an
intent to communicate that state from sender to receiver. It thus makes sense
to consider “foreign” conditions (that do not share sender and receiver with the
consequent promise) to be inoperative unless a k-binding is in effect.

These new promise bodies — together with conditional promises — give us a
variety of ways to express complex temporal relationships and state changes.

4.3 Failover

Normally, in a non-failover situation, we have a situation of offer and use promises:
(s,¢,b) and (¢, s,U(b)). The server agent promises until its death, and the client
agent promises until its death, respectively.

Failover is represented as a conditional promise network in which the failure of
one service triggers a response from another server. We need several components
to make this work.

1. (s1,#,b): The original server s; promises to provide the service to everyone.

2. (sq,%,b): the backup server so promises to provide the service to everyone.

3. {c,s1,U(b)): the client promises to use the original server until it or the client
fails.

4. (c, 52, U(b))|a({s1, ¢, b)): in a failover situation, the client promises to use the

failover server if the original server fails, until the original server comes alive

again.

When the first server fails, the client is not breaking its promise to use the failed
server; but it must receive a new promise from the original server in order to
continue. Note that the backup server is only utilized until the client receives a
valid promise from the original server.

But the above picture is not complete, because the last promise above can-
not be directly observed. Without further information, that promise is non-
sense. One way to fix this is to create a knowledge binding from server s; to
server So: (s1, s2, k((s1,¢,b)), as well as a usage-of-knowledge binding in return:

<327 S1, U("{(<Sla C, b>))

4.4 Complex time-varying behavior

Suppose we wish to utilize the temporal calculus to describe a state machine for
the state of a particular agent, where states will change over time due to external
events or timeouts. The temporal operators are powerful enough to describe any
such state machine:

Theorem 2. Suppose agent A wishes to program a time progression on agent B
in which promises p1,pa,...,pr become exclusively operative in sequence. This
can be accomplished with conditional promises, a, and negation.

Proof. Let {p;} be a set of promises to transition between, and let {s; | i =
1,...,k + 1} be a set of “abstract” promises whose assertion by any means
“gates” the promises {p;} by accomplishing state changes. Let the promise set
C contain:

p1 | —a(s1), a(s2)
p2 | ~a(s2), a(s3)

p3 | ~a(s3), a(sa)
pi | ~a(si), a(siv1)

pr | ~a(sk), askq1)

Now we can accomplish state changes via the gate promises s;|7(0). If these are
asserted in order, then promise s;|7(0) makes promise p; operative and promise
pi—1 non-operative. In this way, the target agent transitions in sequence between
states p1 to pg. O

The same construction can be utilized to cycle through any number of sets of
promises, over time or in reaction to events.

Note that these transitions can only happen once because of the self-canceling
behavior of . Once a has done its work, it becomes permanently inoperative
and its rule effectively disappears. Thus:

Corollary 1. An agent can achieve a cyclic behavior in a set of promises sent
to another agent only by re-promising clauses that have become permanently
non-operative.

Note that any such control structure, once promised, can be eradicated as
well:

Corollary 2. The state machine in the previous proof can be erased from the
target Y by the agent X, as needed.

Proof. The state machine consists of one-time transitions based upon asserting
certain events. When these transitions are used, they become permanently in-
operative. To erase the state machine, one must take it through its transitions,
after which each one becomes inoperative.

This is complicated unless one remembers that one can assert any state for a
short time, or even for no time at all. To erase a rule, one makes its un-negated
antecedents operative for a short time, then makes them inoperative again. O

Thus conditional promises provide a way both to accomplish state changes and
to erase the mechanism that enables them, as needed.

4.5 Calculating operative promises

Temporal promises add no major complexity to the calculation of which promises
are operative or not.

Theorem 3. At a particular time t, on a particular agent X, the calculation
of whether a particular promise is operative can be done in two phases: first
eliminating scoping rules, then interpreting pure conditionals.

Proof. First suppose there is an abstract promise called “true” that is operative
at all times. Create a pure conditional network C’ from the temporo-conditional
network C' as follows:

1. Remove the whole promise for any 7 or a conditions that have expired. T
expires when its time is up, while « expires when the event for which it is
watching has been observed.

2. Replace all operative 7 and a with “true”.

Claim: the operative promises in the resulting network are equivalent with the
operative promises in the original network. First, by definition of conditional
promises and the temporal operators, all temporal operators expire at the end
of their events. This means we can safely discard them, as they cannot become
operative again. Second, when a condition is true in a conditional, the operative
effect is that it is simply operative, and does not depend upon its temporal
qualities. If for example we have plqi1,qo, ..., qx, and we know ¢; is operative,
then plq1,...,qi—1,true, ¢i+1,- .., qx has the same effect as the previous one on
p. The negation of “true”, if it appears, behaves properly and one can delete the
conditional promise containing it from the set of promises to be considered. O

As a corollary, any promise whose temporal conditions aren’t operative can be
discarded as obsolete. This helps us “tidy up” promise space.

5 Conclusions

We have demonstrated that extending conditional promises with temporal promises
«a and 7 (as well as negation) allows one to synthesize common network behav-
iors such as leasing and event-driven reaction. This mechanism allows an agent
to almost completely control other agents’ views of its commitments, over time.
At any particular time, however, the commitments binding upon agents are an-
alyzable via normal promise theory. Since temporally scoped promises become
permanently inoperative after their conditions become inoperative, the promises
an agent holds can be “tidied” by removing permanently inoperative condition-
als.

Many questions remain to be answered. What is the most efficient way to
compute the operative promises? Are there operators more efficient than the pro-
posed operators? What depictions of conditional and temporal state are useful?
There are more questions than answers.

One thing is certain, however: the ability for two agents to agree to forget a
promise after a specific time is both useful and necessary in modeling contem-
porary networks.

References

10.

11.

12.

13.

14.

15.

16.

Burgess, M.: An approach to understanding policy based on autonomy and vol-
untary cooperation. In Schénwalder, J., Serrat, J., eds.: DSOM. Volume 3775 of
Lecture Notes in Computer Science., Springer (2005) 97-108

. Burgess, M., Begnum, K.: Voluntary cooperation in pervasive computing services.

In: LISA, USENIX (2005) 143-154

Burgess, M., Fagernes, S.: Pervasive computer management: A model of network
policy with local autonomy. IEEE Transactions on Networking (2006) (submitted)
Burgess, M., Fagernes, S.: Promise theory - a model of autonomous objects for
pervasive computing and swarms. In: ICNS, IEEE Computer Society (2006) 118
Burgess, M., Couch, A.: Modeling next generation configuration management tools.
In: LISA, USENIX (2006) 131-147

Aredo, D., Burgess, M., Hagen, S.: A promise theory view on the policies of
object orientation and the service oriented architecture. (preprint) (November
2006) (submitted)

Bergstra, J., Burgess, M.: Local and global trust based on the concept of promises.
Technical Report PRG0606, University of Amsterdam (September 2006)

Burgess, M., Couch, A.: Autonomic computing approximated by fixed-point
promises. In: Proceedings of First IEEE International Workshop on Modeling
Autonomic Communication Environments (MACE). (2006) 197-222

Burgess, M.: A site configuration engine. Computing systems (MIT Press: Cam-
bridge MA) 8 (1995) 309

Burgess, M., Ralston, R.: Distributed resource administration using cfengine.
Softw. Pract. Exper. 27(9) (1997) 1083-1101

Burgess, M.: Automated system administration with feedback regulation. Software
practice and experience 28 (1998) 1519

Burgess, M.: Cfengine as a component of computer immune-systems. Proceedings
of the Norwegian conference on Informatics (1998)

Burgess, M.: Configurable immunity for evolving human-computer systems. Sci-
ence of Computer Programming 51 (2004) 197

Alva L. Couch, D., Gilfix, M.: It’s elementary, dear watson: Applying logic pro-
gramming to convergent system management processes. In: LISA ’99: Proceedings
of the 13th USENIX conference on System administration, Berkeley, CA, USA,
USENIX Association (1999) 123-138

Bergstra, J., Bethke, I., Burgess, M.: A process algebra based framework for
promise theory. Technical Report PRG0701, University of Amsterdam (March
2007)

Couch, A., Sun, Y.: On observed reproducibility in network configuration man-
agement. Science of Computer Programming 53 (2004) 215-253

