
Modeling change without
breaking promises

Alva Couch
Hengky Susanto

Marc Chiarini
Tufts University

Promises

• A promise is a one-sided agreement from
the sender to conform to some limits upon
the sender’s behavior.

• Sender agrees to some behavior b (called
a promise body)

• Receiver simply observes and is not
obligated.

sender s receiver r
promise π=<s,r,b>

our notation
<s,r,b>

Conditional promises

• A conditional promise constrains the sender’s
behavior only under certain conditions.

• In our calculus of conditions, only other
promises can be conditions.

• The notation <s2,r2,b2> | <s1,r1,b1> means that
s2 promises b2 to r2 only if it observes that s1
has promised b1 to r1.

• Subtle: the above is really one promise with a
special body: <s2,r2,(b2| <s1,r1,b1>)>

One problem with promises...

• ... is that they aren’t valid “forever”.
• If conditions change, an agent must “break

promises”.
• A broken promise occurs when an agent

promises something contradictory to a
prior promise it has made.

• Note that a promise may also be
unfulfilled; this is different from breaking
a promise.

Semantics of broken promises

• The “contradiction” that signals that a
promise is broken can be complex.

• A promise body can be thought of as a set
of prolog-style facts.

• A broken promise is one in which the
facts are logically inconsistent with
those of some prior promise.

Example of a broken promise

• fileservice(100ms) – I promise to give you file
service with an average response time of
100ms.

• fileservice(70ms) – better, not a broken
promise.

• fileservice(200ms) – worse, and breaks both
other promises.

• Semantics of broken promises are complex and
depend upon semantics of promise bodies!

How not to break promises

• Scope promises in time and by events.
• Avoid having to infer contradictions to

invalidate promises.
• Really, this is part of the type system of

promise bodies.
• But we can separate this scoping from the

type system via a simple notation.

Operative and inoperative promises

• A promise is operative (at a particular
time) if it holds at that time, and
inoperative otherwise.

1. Unconditional promises are operative until
they are broken.

2. Conditional promises are operative if their
conditions are operative.

α and τ

• Two new promise bodies:
– τ(increment) is operative from current time to

current time + increment
– α(promise) is operative until receipt of the

specified promise.
• And one new operator:

– ﹁(p) is operative whenever p is not
operative.

Implicit sender and receiver

• <s,r,(b|τ(1 second))>
means b is operative for one second only.

• We can “factor” τ out of the promise body:
<s,r,b>|<s,r,τ(1 second)>

• But only s,r make sense as sender and
receiver of τ. Thus we can write:
<s,r,b>|τ(1 second)
without confusion

Timing diagrams

operative

inoperative

lookup()|τ(2 hours)
received

2 hours

τ(2 hours)

lookup()|τ(2 hours)
deleted

operative

inoperative

﹁τ(2 hours)

lookup()|﹁τ(2 hours)
received

lookup()|﹁τ(2 hours)
condition deleted

Leasing and gating

• τ is operative for a given amount of time.
– So τ can be used to simulate leasing.

• α is operative until a given promise is
received.
– So α can be used to simulate gating, in which

receipt of one promise activates or
deactivates another.

Leasing

• <s,r,dhcp(192.138.177.3)> | τ(2 hours)
a DHCP lease grants use of an IP address for

two hours.
• <s,r,fileservice()>|﹁τ(1 hour), τ(3 hours)

s offers r fileservice one hour from now, for two
hours.

• (a list of conditions is a conjunction)

Gating

• <s,r,fileservice()> | α(<r,s,stop()>)
offer fileservice until told to stop offering it.

• <r,s,stop()>|τ(0)
stop offering file service any more.
(τ(0) becomes operative and then non-operative

at the same time step and “gates” the
transition.)

(stop() is an abstract promise whose meaning is
just to gate another one)

Type factoring

Consider the promise system
• <s,r,dhcp(192.138.178.1)> | τ(2 hours)
• <r,s,dns()> | α(<s,r,dns()>)
At any time, this system can be reduced to

an equivalent one free of α and τ.
The reduction differs, depending upon time

and events.

Before 2 hours are up and
<s,r,dns()> not received

Reduced system:
• <s,r,dhcp(192.138.178.1)> | τ(2 hours)
• <r,s,dns()> | α(<s,r,dns()>)

After 2 hours are up and
<s,r,dns()> not received

Reduced system:
• <s,r,dhcp(192.138.178.1)> | τ(2 hours)
• <r,s,dns()> | α(<s,r,dns()>)

After 2 hours are up and after
<s,r,dns()> received

Reduced system:
• <s,r,dhcp(192.138.178.1)> | τ(2 hours)
• <r,s,dns()> | α(<s,r,dns()>)

Claims

• α and τ are the minimal necessary
operators for accomplishing change in
promise networks without breaking
promises. They are:
– self-erasing when purpose is complete
– scalable to use in complex tasks
– flexible; any sequence of promise states can

be managed in the promise space of the
recipient.

– external to the type system of promise bodies.

Modeling change without
breaking promises

Alva Couch
Hengky Susanto

Marc Chiarini
Tufts University

	Modeling change without breaking promises
	Promises
	Conditional promises
	One problem with promises...
	Semantics of broken promises
	Example of a broken promise
	How not to break promises
	Operative and inoperative promises
	α and τ
	Implicit sender and receiver
	Timing diagrams
	Leasing and gating
	Leasing
	Gating
	Type factoring
	Before 2 hours are up and <s,r,dns()> not received
	After 2 hours are up and <s,r,dns()> not received
	After 2 hours are up and after <s,r,dns()> received
	Claims
	Modeling change without breaking promises

