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Promises

• A promise is a one-sided agreement from 
the sender to conform to some limits upon 
the sender’s behavior. 

• Sender agrees to some behavior b (called 
a promise body)

• Receiver simply observes and is not 
obligated. 

sender s receiver r
promise π=<s,r,b>

our notation 
<s,r,b>



Conditional promises

• A conditional promise constrains the sender’s 
behavior only under certain conditions. 

• In our calculus of conditions, only other 
promises can be conditions. 

• The notation <s2,r2,b2> | <s1,r1,b1> means that 
s2 promises b2 to r2 only if it observes that s1
has promised b1 to r1. 

• Subtle: the above is really one promise with a 
special body: <s2,r2,(b2| <s1,r1,b1>)>



One problem with promises...

• ... is that they aren’t valid “forever”. 
• If conditions change, an agent must “break 

promises”. 
• A broken promise occurs when an agent 

promises something contradictory to a 
prior promise it has made. 

• Note that a promise may also be
unfulfilled; this is different from breaking 
a promise. 



Semantics of broken promises

• The “contradiction” that signals that a 
promise is broken can be complex. 

• A promise body can be thought of as a set 
of prolog-style facts.

• A broken promise is one in which the 
facts are logically inconsistent with 
those of some prior promise.



Example of a broken promise

• fileservice(100ms) – I promise to give you file 
service with an average response time of 
100ms. 

• fileservice(70ms) – better, not a broken 
promise. 

• fileservice(200ms) – worse, and breaks both 
other promises. 

• Semantics of broken promises are complex and 
depend upon semantics of promise bodies! 



How not to break promises

• Scope promises in time and by events. 
• Avoid having to infer contradictions to 

invalidate promises. 
• Really, this is part of the type system of 

promise bodies. 
• But we can separate this scoping from the 

type system via a simple notation. 



Operative and inoperative promises

• A promise is operative (at a particular 
time) if it holds at that time, and 
inoperative otherwise. 

1. Unconditional promises are operative until 
they are broken. 

2. Conditional promises are operative if their 
conditions are operative. 



α and τ

• Two new promise bodies: 
– τ(increment) is operative from current time to 

current time + increment
– α(promise) is operative until receipt of the 

specified promise. 
• And one new operator:

– ﹁(p) is operative whenever p is not 
operative. 



Implicit sender and receiver

• <s,r,(b|τ(1 second))>
means b is operative for one second only.

• We can “factor” τ out of the promise body: 
<s,r,b>|<s,r,τ(1 second)>

• But only s,r make sense as sender and 
receiver of τ. Thus we can write:
<s,r,b>|τ(1 second)
without confusion



Timing diagrams
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Leasing and gating

• τ is operative for a given amount of time. 
– So τ can be used to simulate leasing. 

• α is operative until a given promise is 
received.
– So α can be used to simulate gating, in which 

receipt of one promise activates or 
deactivates another.  



Leasing

• <s,r,dhcp(192.138.177.3)> | τ(2 hours)
a DHCP lease grants use of an IP address for 

two hours. 
• <s,r,fileservice()>|﹁τ(1 hour), τ(3 hours)

s offers r fileservice one hour from now, for two 
hours. 

• (a list of conditions is a conjunction)



Gating

• <s,r,fileservice()> | α(<r,s,stop()>)
offer fileservice until told to stop offering it.

• <r,s,stop()>|τ(0)
stop offering file service any more. 
(τ(0) becomes operative and then non-operative 

at the same time step and “gates” the 
transition.)

(stop() is an abstract promise whose meaning is 
just to gate another one)



Type factoring

Consider the promise system
• <s,r,dhcp(192.138.178.1)> | τ(2 hours)
• <r,s,dns()> | α(<s,r,dns()>)
At any time, this system can be reduced to 

an equivalent one free of α and τ.
The reduction differs, depending upon time 

and events. 



Before 2 hours are up and 
<s,r,dns()> not received

Reduced system:
• <s,r,dhcp(192.138.178.1)> | τ(2 hours)
• <r,s,dns()> | α(<s,r,dns()>)



After 2 hours are up and 
<s,r,dns()> not received

Reduced system:
• <s,r,dhcp(192.138.178.1)> | τ(2 hours)
• <r,s,dns()> | α(<s,r,dns()>)



After 2 hours are up and after 
<s,r,dns()> received

Reduced system: 
• <s,r,dhcp(192.138.178.1)> | τ(2 hours)
• <r,s,dns()> | α(<s,r,dns()>)



Claims

• α and τ are the minimal necessary 
operators for accomplishing change in 
promise networks without breaking 
promises. They are:
– self-erasing when purpose is complete
– scalable to use in complex tasks 
– flexible; any sequence of promise states can 

be managed in the promise space of the 
recipient. 

– external to the type system of promise bodies.  
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