Dimensionality reduction in the Geostatistical approach for Hydraulic Tomography

Arvind Saibaba1
Peter K. Kitanidis2,1

1Institute for Computational and Mathematical Engineering
2Department of Civil and Environmental Engineering.
Stanford University

June 19, 2012
Outline

1 Introduction

2 Karhunen-Loève Expansion

3 Inverse Modeling

4 Numerical Experiments
Context of our work

Motivation:

- Hydraulic tomography (HT) is a technique to estimate parameters such as \textit{hydraulic conductivity, storativity} etc.
- HT can be mathematically posed as an Inverse problem.
- Inverse problems are challenging because they are
 - under-determined
 - ill-posed, and
 - computationally expensive
- Use Quasi-Linear Geostatistical approach\(^1\)

\(^1\)Kitanidis, Quasi-linear geostatistical theory of inverting, WRR 1995.
Motivation:

- Hydraulic tomography (HT) is a technique to estimate parameters such as hydraulic conductivity, storativity etc.
- HT can be mathematically posed as an Inverse problem.
- Inverse problems are challenging because they are
 - under-determined
 - ill-posed, and
 - computationally expensive
- Use Quasi-Linear Geostatistical approach

Our contributions:

- A computationally scalable approach to solving Hydraulic Tomography.
- Reduced dimensional modeling - via Karhunen-Loéve Expansion.
- Works on irregular spaced grids - local refinement, complex geometries.
- Extension to 3D possible.

1 Kitnunis, Quasi-linear geostatistical theory of inversing, WRR 1995.
Previous Work:

Computing Karhunen-Loéve Expansion

Dimensionality Reduction and Inverse Problems

Using Hierarchical-matrix approach

Outline

1 Introduction

2 Karhunen-Loève Expansion

3 Inverse Modeling

4 Numerical Experiments
Random Field

Model unknowns as a Gaussian random field

\[E[s] = \mu \quad E[(s - \mu)(s - \mu)^T] = Q \]

Figure: Three realizations of a Gaussian random field with exponential covariance

- Storage and computational costs for \(Q_{ij} = \kappa(x_i, x_j) \ i, j = 1, \ldots, m \) high.
- Examples of \(\kappa(\cdot, \cdot) \): Matern family, Gaussian, Exponential.
Karhunen-Loéve Expansion

Consider the Gaussian random field \(s(x) \), with mean \(\mu(x) \) and covariance \(\kappa(x, y) \), on the bounded domain \(x \in D \). The KLE can now be written as

\[
s(x) = \mu(x) + \sum_{i=1}^{\infty} \sqrt{\lambda_i} \phi_i(x) \xi_i \quad \text{with},
\]

\[
\mu(x) = E[s(x)], \quad \xi_i \sim \mathcal{N}(0, 1)
\]
Karhunen-Loéve Expansion

Consider the Gaussian random field \(s(x) \), with mean \(\mu(x) \) and covariance \(\kappa(x, y) \), on the bounded domain \(x \in D \). The KLE can now be written as

\[
s(x) = \mu(x) + \sum_{i=1}^{\infty} \sqrt{\lambda_i} \phi_i(x) \xi_i \quad \text{with,} \quad \mu(x) = E[s(x)], \quad \xi_i \sim \mathcal{N}(0, 1)
\]

\((\lambda_i, \phi_i(x))\) are the eigenpair obtained as the solution to the Fredholm integral equation of the second kind

\[
\int_D \kappa(x, y) \phi(y) dy = \lambda \phi(x)
\]
Karhunen-Loéve Expansion

Consider the **Gaussian random field** \(s(x) \), with mean \(\mu(x) \) and covariance \(\kappa(x, y) \), on the bounded domain \(x \in D \). The KLE can now be written as

\[
s(x) = \mu(x) + \sum_{i=1}^{\infty} \sqrt{\lambda_i} \phi_i(x) \xi_i \quad \text{with,}
\]

\[
\mu(x) = E[s(x)], \quad \xi_i \sim N(0, 1)
\]

\((\lambda_i, \phi_i(x))\) are the eigenpair obtained as the solution to the Fredholm integral equation of the second kind

\[
\int_{D} \kappa(x, y) \phi(y) dy = \lambda \phi(x)
\]

Further,

\[
C_K(x, y) = \sum_{k=1}^{K} \lambda_k \phi_k(x) \phi_k(y) \xrightarrow{K \to \infty} \kappa(x, y)
\]
Consider the integral eigenvalue problem

\[\int_{\mathcal{D}} \kappa(x, y)\phi(y)dy = \lambda \phi(x) \]

Smother the kernel \(\kappa \) is, the faster \(\{\lambda_m\} \to 0 \).

If \(\mathcal{D} \subset \mathbb{R}^d \) and if the kernel is \(^2\)

- piecewise \(H^r \) \(\lambda_m \leq c_1 m^{-r/d} \)
- piecewise smooth \(\lambda_m \leq c_2 m^{-r} \) for any \(r > 0 \)
- piecewise analytic \(\lambda_m \leq c_3 \exp\left(-c_4 m^{1/d}\right) \)

This provides theoretical justification for truncating this series to a finite number of terms.

\(^2\text{Schwab and Todor (2006).}\)
Computing Karhunen-Loéve Expansion on irregular domains

Discretize using standard Finite Elements and perform a Galerkin projection.

\[\int_D \kappa(x, y) \phi(y) dy = \lambda \phi(x) \]

This results in a Generalized Eigenvalue problem

\[W \phi_l = \lambda M \phi_l \quad l = 1, 2, \ldots \]
Computing Karhunen-Loéve Expansion on irregular domains

Discretize using standard Finite Elements and perform a Galerkin projection.

\[
\int_{\mathcal{D}} \kappa(x, y) \phi(y) dy = \lambda \phi(x)
\]

This results in a **Generalized Eigenvalue** problem

\[
W \phi_l = \lambda M \phi_l \quad l = 1, 2, \ldots
\]

where,

\[
W_{ij} = \sum_{k, v} \int_{\mathcal{D}} \int_{\mathcal{D}} b_i(x) b_k(x) \kappa(x_i, y_j) b_j(y) b_v(y) dx dy \text{ over all triangles } k,v
\]

\[
M_{ij} = \int_{\mathcal{D}} b_i(x) b_j(x) dx
\]

and \(b_i \) are the Galerkin basis functions and \(M \) is the called the **mass matrix**.

This above expression can be simplified to

\[
MQM \phi_l = \lambda M \phi_l \quad l = 1, 2, \ldots
\]
Computing Karhunen-Loéve Expansion on irregular domains

Discretize using standard Finite Elements and perform a Galerkin projection.

\[\int_{\mathcal{D}} \kappa(x, y) \phi(y) dy = \lambda \phi(x) \]

This results in a *Generalized Eigenvalue* problem

\[W \phi_l = \lambda M \phi_l \quad l = 1, 2, \ldots \]

where,

\[W_{ij} = \sum_{k,v} \int_{\mathcal{D}} \int_{\mathcal{D}} b_i(x) b_k(x) \kappa(x_i, y_j) b_j(y) b_v(y) dx dy \quad \text{over all triangles } k,v \]

\[M_{ij} = \int_{\mathcal{D}} b_i(x) b_j(x) dx \]

and \(b_i \) are the Galerkin basis functions and \(M \) is the called the *mass matrix*.

This above expression can be simplified to

\[MQM \phi_l = \lambda M \phi_l \quad l = 1, 2, \ldots \]

Storing and computing \(Q \), the covariance matrix, is expensive.
Hierarchical matrix (\mathcal{H}-matrix3) overview

- Storage and matrix-vector product approximately in $O(N \log N)$, as compared to $O(N^2)$.
- Relies on a hierarchy of low-rank representations of sub-blocks.
- Works on irregularly spaced points for various covariance kernels.

Figure: left: A typical \mathcal{H}-matrix rank structure and right: Time for matrix vector product for exponential covariance function. Each subblock is approximated with relative error in Frobenius norm as $\epsilon = 10^{-6}$

On irregular domains

Implementation Details

- $\kappa(x, y) = (1 + \alpha r) \exp(-\alpha r)$, $r = \|x - y\|$ with 10201 points
- Eigenvalue solver - Kylov-Schur algorithm. (SLEPc/PETSc).

Figure: Eigenvalue decay and Eigenfunctions of 2, 14, 23, 40.
Outline

1 Introduction

2 Karhunen-Loève Expansion

3 Inverse Modeling

4 Numerical Experiments
Geostatistical approach

Measurement Equation

\[y = h(s) + v \quad v \sim \mathcal{N}(0, R) \]

- \(y \) := observations or measurements - given.
- \(s \) := model parameters, we want to estimate.
- \(h(s) \) := parameter-to-observation map - given.

Using Bayes’ rule,

\[
p(s|y) \propto p(y|s)p(s) \propto p(s) \exp \left(-\frac{1}{2} \| y - h(s) \|_R^{-1} \right)
\]

After appropriate discretization, represent \(s(\cdot) \) by a truncated KLE

\[s_K = \mu + \Phi \xi \]

where, columns of \(\Phi \) are the eigenfunctions scaled by square root of eigenvalues.
Geostatistical approach contd.

Dimension reduced posterior pdf

\[p(\xi | y) \propto p(s_K(\xi) | y)p(\xi) \]
\[\propto \exp\left(-\frac{1}{2} \|y - h(\xi)\|_{R^{-1}}\right) \exp\left(-\frac{1}{2} \xi^T \xi\right) \]
Geostatistical approach contd.

Dimension reduced posterior pdf

\[p(\xi|y) \propto p(s_K(\xi)|y)p(\xi) \]
\[\propto \exp \left(-\frac{1}{2} \|y - h(\xi)\|_{R^{-1}} \right) \exp \left(-\frac{1}{2} \xi^T \xi \right) \]

Maximum A Posteriori estimate

\[\arg \min_\xi \frac{1}{2} \|y - h_K(\xi)\|_{R^{-1}} + \frac{\beta}{2} \xi^T \xi \]
Geostatistical approach contd.

Dimension reduced posterior pdf

\[p(\xi|y) \propto p(s_K(\xi)|y)p(\xi) \]
\[\propto \exp \left(-\frac{1}{2} \|y - h(\xi)\|_{R^{-1}} \right) \exp \left(-\frac{1}{2} \xi^T \xi \right) \]

Maximum A Posteriori estimate

\[\arg \min_{\xi} \frac{1}{2} \|y - h_K(\xi)\|_{R^{-1}} + \frac{\beta}{2} \xi^T \xi \]

Inexact Gauss-Newton-Krylov Iteration

\[(J^T R^{-1} J + \beta I) \delta \xi = -J^T R^{-1} (h(\xi) - y) - \beta \xi \]

where, \(J = \frac{\partial h}{\partial s_K} \frac{\partial s_K}{\partial \xi} \) is the Jacobian at the current iteration.

This also includes a backtracking line search that satisfies Strong Wolfe’s condition.
Hydraulic Tomography

Goal: Estimate log K from discrete measurements of u_i.

Figure: (left) Location of sensors and pumping wells and (right) “True” field as a realization of a random field with exponential covariance.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length [m]</td>
<td>500</td>
</tr>
<tr>
<td>Mean log K m²/s</td>
<td>-5.9220</td>
</tr>
<tr>
<td>Var log K</td>
<td>0.3475</td>
</tr>
<tr>
<td>Q m³/s</td>
<td>4×10^{-3}</td>
</tr>
</tbody>
</table>

Governing Equations

$$-\nabla (K(x) \nabla u_i(x)) = q_i \delta(x - x_i)$$

$$u = 0 \quad x \in \partial D_D$$

$$\frac{\partial u}{\partial n} = 0 \quad x \in \partial D_N$$
Reconstruction

Figure: (left) Reconstruction using KLE + GNK (400 terms) (right) “True” field as a realization of a random field with exponential covariance. The relative L^2 error is 0.2964

<table>
<thead>
<tr>
<th>Parameter</th>
<th>True Field</th>
<th>Reconstructed field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean log K m2/s</td>
<td>-5.9220</td>
<td>-5.9720</td>
</tr>
<tr>
<td>Var log K</td>
<td>0.3475</td>
<td>0.3158</td>
</tr>
</tbody>
</table>

$$\kappa(x, y) = (1 + \alpha r) \exp(-\alpha r) \quad r = \|x - y\|$$
Performance of Gauss-Newton solver

With problem size - Fixed \# terms in KLE 100

<table>
<thead>
<tr>
<th>Problem Size</th>
<th>GN Iterations</th>
<th>Av. Inner iterations</th>
<th>Time [s]</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>26×26</td>
<td>6</td>
<td>46</td>
<td>142.78</td>
<td>0.3369</td>
</tr>
<tr>
<td>51×51</td>
<td>5</td>
<td>56</td>
<td>619.20</td>
<td>0.3546</td>
</tr>
<tr>
<td>101×101</td>
<td>6</td>
<td>76</td>
<td>5042.4</td>
<td>0.3968</td>
</tr>
</tbody>
</table>

With increasing terms in KLE - Fixed grid size 51×51

![Eigenvalue decay](image)

<table>
<thead>
<tr>
<th>KLE</th>
<th>Av. Inner iter.</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12</td>
<td>0.4751</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>0.3561</td>
</tr>
<tr>
<td>100</td>
<td>35</td>
<td>0.3546</td>
</tr>
<tr>
<td>150</td>
<td>35</td>
<td>0.3545</td>
</tr>
</tbody>
</table>