Fast methods for oscillatory hydraulic tomography with multiple frequency data

Arvind Saibaba1
Tania Bakhos1
Peter K. Kitanidis2,1

1Institute for Computational and Mathematical Engineering
2Department of Civil and Environmental Engineering.
Stanford University

April 18, 2013
Oscillatory hydraulic tomography

Figure: Experimental setup of pumping tests

- Collect pressure (head) measurements from pumping tests
- Recover aquifer properties such as conductivity, storage etc.
- To better locate natural resources, treat pollution and manage underground sites.
Time-dependent groundwater flow equations.

Pumping well - source oscillating at fixed frequency and amplitude

At long time, head can be decomposed into phasor and a complex exponential.

\[h(x, t) = \Re(\Phi(x) \exp(i\omega t)) \]
Governing equations - Forward problem

- Time-dependent groundwater flow equations.
- Pumping well - source oscillating at fixed frequency and amplitude
- At long time, head can be decomposed into phasor and a complex exponential.

\[h(x, t) = \Re(\Phi(x) \exp(i\omega t)) \]

The phasor satisfies

\[-\nabla \cdot (K(x)\nabla \Phi(x)) + i\omega S_s(x)\Phi(x) = Q_0\delta(x - x_s), \quad x \in \Omega \]

\[\Phi(x) = 0, \quad x \in \partial\Omega_D \]

\[\nabla \Phi(x) \cdot n = 0, \quad x \in \partial\Omega_N \]
Governing equations - Forward problem

- Time-dependent groundwater flow equations.
- Pumping well - source oscillating at fixed frequency and amplitude
- At long time, head can be decomposed into phasor and a complex exponential.

\[h(x, t) = \Re(\Phi(x) \exp(i\omega t)) \]

The phasor satisfies

\[-\nabla \cdot (K(x) \nabla \Phi(x)) + i\omega S_s(x) \Phi(x) = Q_0 \delta(x - x_s), \quad x \in \Omega \]
\[\Phi(x) = 0, \quad x \in \partial \Omega_D \]
\[\nabla \Phi(x) \cdot n = 0, \quad x \in \partial \Omega_N \]

Making non-dimensional and discretizing, leads to a shifted system.

\[(\text{laplacian} + i\omega \text{complex shift storage}) \Phi(\sigma) = b \]

Solve as many systems as number of frequencies. Computationally expensive!
Denoising the signal

Location of measurement and pumping wells

Location 1

Location 2

Pumping well

Location of measurement and pumping wells

Location 1

Location 2

Pumping well

Hydraulic head (m)

Time (s)

Hydraulic head (m)

Time (s)
Consider the measurement equation

\[y = h(s) + v \quad v \sim \mathcal{N}(0, R) \]

where,

- \(y \) := measurements.
- \(s \) := model parameters
- \(h(s) \) := measurement op.

Further, assume Gaussian prior

\[s \sim \mathcal{N}(X\beta, Q) \]
Quasi-linear geostatistical approach

Consider the measurement equation

\[y = h(s) + v \quad v \sim \mathcal{N}(0, R) \]

where,

\[y := \text{measurements.} \]
\[s := \text{model parameters} \]
\[h(s) := \text{measurement op.} \]

Further, assume Gaussian prior

\[s \sim \mathcal{N}(X\beta, Q) \]

Maximum a posteriori estimate

\[\arg\min_{s, \beta} \frac{1}{2} \| y - h(s) \|_{R^{-1}} + \frac{1}{2} \| s - X\beta \|_{Q^{-1}} \]

subject to

likelihood prior
Quasi-linear geostatistical approach

Consider the measurement equation

\[y = h(s) + v \quad v \sim \mathcal{N}(0, R) \]

where,

\[y := \text{measurements.} \]
\[s := \text{model parameters} \]
\[h(s) := \text{measurement op.} \]

Further, assume Gaussian prior

\[s \sim \mathcal{N}(X\beta, Q) \]

Maximum a posteriori estimate

\[\arg\min_{s, \beta} \frac{1}{2}\|y - h(s)\|_{R^{-1}} + \frac{1}{2}\|s - X\beta\|_{Q^{-1}} \]

\[\text{likelihood} \quad \text{prior} \]
Fast solution for multiple frequencies

The forward problem

\[(K + iω_j M)x_j = b \quad j = 1, \ldots, n_f\]
Fast solution for multiple frequencies

The forward problem

\[(K + i\omega_j M)x_j = b \quad j = 1, \ldots, n_f\]

- Developed and analysed Krylov subspace solver for shifted systems.

Developed and analysed Krylov subspace solver for shifted systems.

The cost is nearly independent of number of frequencies.

Build a smaller dimension approximation space, search for optimal solutions.

200 systems, 90k unknowns.

Figure: Comparison of time taken using a direct solver vs. using an iterative solver.
Fast solution for multiple frequencies

The forward problem

\[(K + i\omega_j M)x_j = b \quad j = 1, \ldots, n_f\]

- Developed and analysed Krylov subspace solver for shifted systems.
- The cost is nearly independent of number of frequencies.

Figure: Comparison of time taken using a direct solver vs. using an iterative solver.
Fast solution for multiple frequencies

The forward problem

\[(K + i\omega_j M)x_j = b \quad j = 1, \ldots, n_f \]

- Developed and analysed Krylov subspace solver for shifted systems.
- The cost is nearly independent of number of frequencies.
- Build a smaller dimension approximation space, search for optimal solutions.
Fast solution for multiple frequencies

The forward problem

\[(K + i\omega_j M)x_j = b \quad j = 1, \ldots, n_f\]

- Developed and analysed Krylov subspace solver for shifted systems.
- The cost is nearly independent of number of frequencies.
- Build a smaller dimension approximation space, search for optimal solutions.

200 systems, 90k unknowns.

Figure: Comparison of time taken using a direct solver vs. using an iterative solver.
Adjoint approach to compute Jacobian

Measurements collected at a given location x_i and time t

$$\Re \left\{ e^{i\omega t} \Phi(x_i) \right\} = A \cos \omega t + B \sin \omega t$$

At each measurement well, measure two pieces of information.
Adjoint approach to compute Jacobian

Measurements collected at a given location x_i and time t

$$\Re \left\{ e^{i\omega t} \Phi(x_i) \right\} = A \cos \omega t + B \sin \omega t$$

At each measurement well, measure two pieces of information.

Steps involved in computing sensitivity

- Solve forward problem for each source (and for each frequency).
- Solve adjoint problem for each measurement location (and for each frequency).
- Compute inner products.
Adjoint approach to compute Jacobian

Measurements collected at a given location \mathbf{x}_i and time t

$$\Re \left\{ e^{i\omega t} \Phi(\mathbf{x}_i) \right\} = A \cos \omega t + B \sin \omega t$$

At each measurement well, measure two pieces of information.

Steps involved in computing sensitivity

- Solve forward problem for each source (and for each frequency).
- Solve adjoint problem for each measurement location (and for each frequency).
- Compute inner products.

The adjoint field Ψ_i satisfies

$$- \nabla \cdot (K \nabla \Psi_i) + i \omega S_s \Psi_i = - \delta(\mathbf{x} - \mathbf{x}_i), \quad \mathbf{x} \in \Omega$$

$$\Psi_i = 0, \quad \mathbf{x} \in \partial \Omega_D$$

$$\mathbf{n} \cdot \nabla \Psi_i(\mathbf{x}) = 0, \quad \mathbf{x} \in \partial \Omega_N$$

The adjoint calculation can be sped up using this fast solver.
Visualization of sensitivity fields

Measurements collected at a given location x_i and time t

$$\Re \left\{ e^{i\omega t} \Phi(x_i) \right\} = A \cos \omega t + B \sin \omega t$$

Figure: Sensitivity at frequency $\frac{2\pi}{30}$ [s$^{-1}$]. Measurement and source locations are 50 m apart
Visualization of sensitivity fields

Measurements collected at a given location x_i and time t

$$\Re \left\{ e^{i\omega t} \Phi(x_i) \right\} = A \cos \omega t + B \sin \omega t$$

Figure: Sensitivity at frequency $\frac{2\pi}{150}$ [s$^{-1}$]. Measurement and source locations are 50 m apart.
Time to compute Jacobian

![Graphs showing time taken for different components in the Jacobian.](image)

Figure: Comparison of time taken for different components in the Jacobian. **Forward** refers to solving the forward problem for multiple frequencies. **Adjoint** refers to solving the adjoint field for multiple frequency at each measurement location. **Inner prod.** refer to forming the inner product to form the rows of the Jacobian.
Results for the inversion for log transmissivity

Figure: Comparison of inversion results for log transmissivity with single and multiple frequencies. Frequency range was $\omega \in \left[\frac{2\pi}{150}, \frac{2\pi}{30}\right]$. The volumetric flow rate is 0.62 lit/sec.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (m)</td>
<td>100</td>
</tr>
<tr>
<td>S (m$^{-1}$)</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>$\mu(T)$ (m/s)</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>var(log T) ((m/s)2)</td>
<td>0.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N_f</th>
<th>Total error</th>
<th>Error within box</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2604</td>
<td>0.0622</td>
</tr>
<tr>
<td>5</td>
<td>0.2387</td>
<td>0.0554</td>
</tr>
<tr>
<td>10</td>
<td>0.2263</td>
<td>0.0509</td>
</tr>
<tr>
<td>20</td>
<td>0.2170</td>
<td>0.0461</td>
</tr>
</tbody>
</table>
Wrap up

Contributions

- Developed and tested flexible Krylov solvers for shifted systems.
- Applied it to oscillatory hydraulic tomography and observed significant speedups.
 - 640 measurements, 10k unknowns, 200k state variables.

Future work

- Joint inversion for conductivity and storage.
- More realistic conductivity fields.

1 NSF Award 0934596, Subsurface Imaging and Uncertainty Quantification.