BIG-O NOTATION AKA THETA NOTATION

for each row i (1 \le i \le n)

- 1) print M[i,1] 5 times
- 2) for each column j (1 ≤ j ≤ n)

 if j is even, print M[i,j]
- 3) if i is a multiple of 100, print all of M

(assume n is a multiple of 100) How many times do we print something?

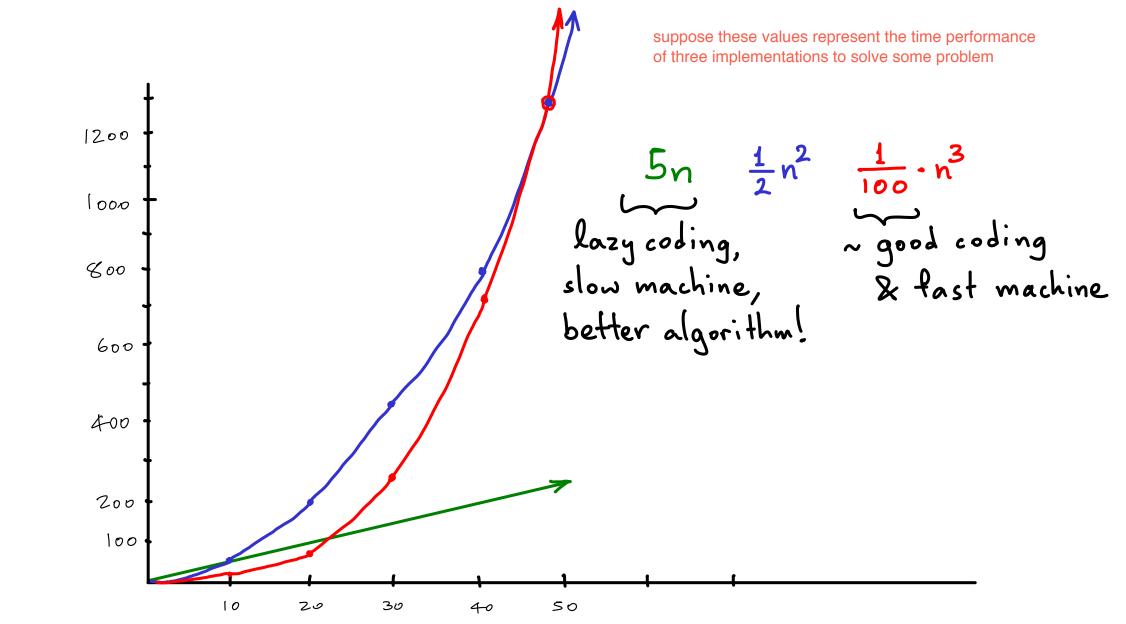
$$5n + \frac{1}{2}n^2 + \frac{n}{100} \cdot n^2 = O(n^3)$$

$$5n + \frac{1}{2}n^2 + \frac{1}{100} \cdot n^3 = O(n^3)$$

We care only about the dominant term, as n > 00 Gin fact we only care about the "pure" component involving n.

Why?

- · none of the lower terms or leading constants matter compared to the part we keep, as n grows large.
- often we don't even know what the leading constants are or they depend on a particular language/platform/05/etc but the general behavior in terms of n doesn't change.

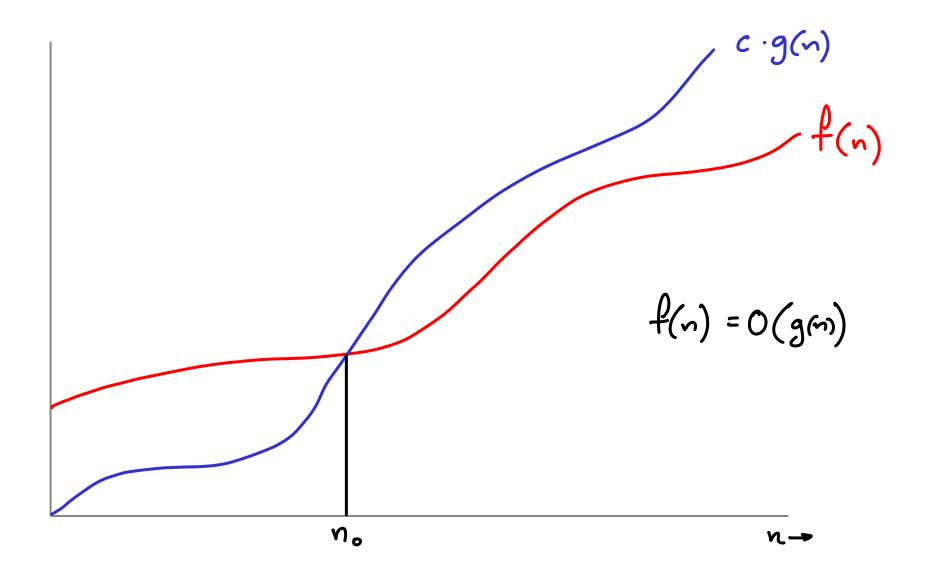


For any x, these stay within a constant additive or multiple factor 0.00001·X larger dominating term will eventually surpass & exceed by far

Formally,
$$f(n) = O(g(n)) - or - f(n) \in O(g(n))$$

if for all $n > n_0$? such that $0 \le f(n) \le c \cdot g(n)$
there is a constant c $\int_{-\infty}^{\infty} c \cdot g(n) dx$

(n₀ is also a constant)



Polynomials: $a + bn + cn^2 + dn^3 - - + zn^k = O(n^k)$ It is important that a,b,c,k, etc are constants $a \cdot n^x + b \cdot n^y = O(n^x)$ [because $bn^y = o(n^x)$]

Assume $x \gg y$. a & b are constants, so don't matter.

Logarithms: 50·logn + 10log⁵n + n°! = O(n°!)

"weaker" than polynomial [note: 50logn = O(log⁵n)]

Exponential: $100 \cdot n^{50} + 3^n + 40 \cdot 2^n = O(3^n)$ "stronger" than polynomial [note: $40n^2 = O(3^n)$]

$$(50 \cdot logn + 10log^{5}n + n^{0.1}) \cdot (100 \cdot n^{50} + 3^{n} + 40 \cdot 2^{n}) = O(n^{0.1}) \cdot O(3^{n}) = O(n^{0.1} \cdot 3^{n})$$

· is
$$5n^2 = O(n^3)$$
? Yes. but a better answer is $O(n^2)$

• is $n^3 = O(5n^2)$? No. & we shouldn't even use $O(5n^2)$

(don't put unnecessary constants in big-0)

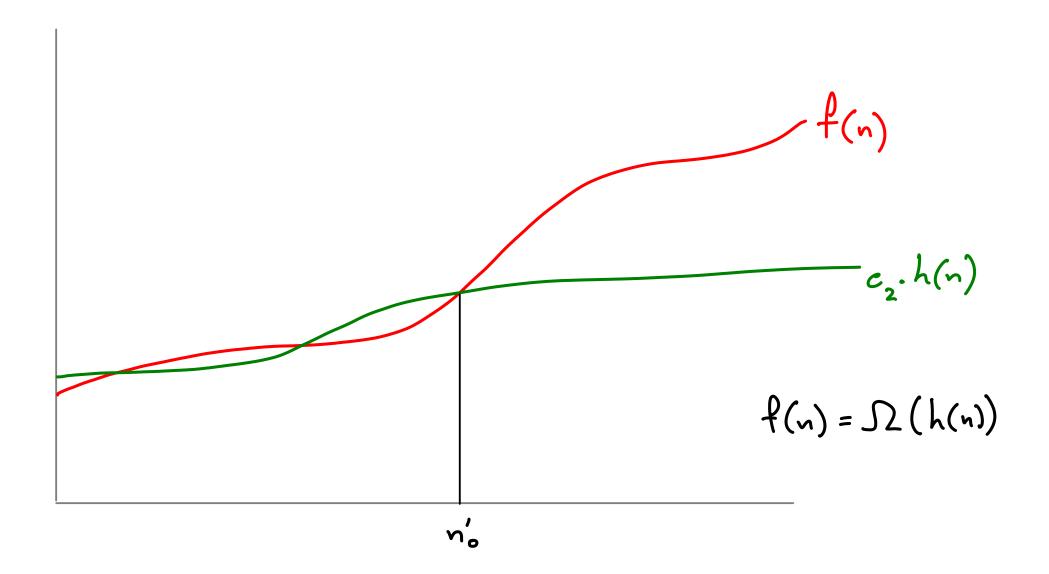
RECAP:
$$f(n) = O(g(n))$$
 means $f(n) \le c \cdot g(n)$ (for all $n > n_0$)

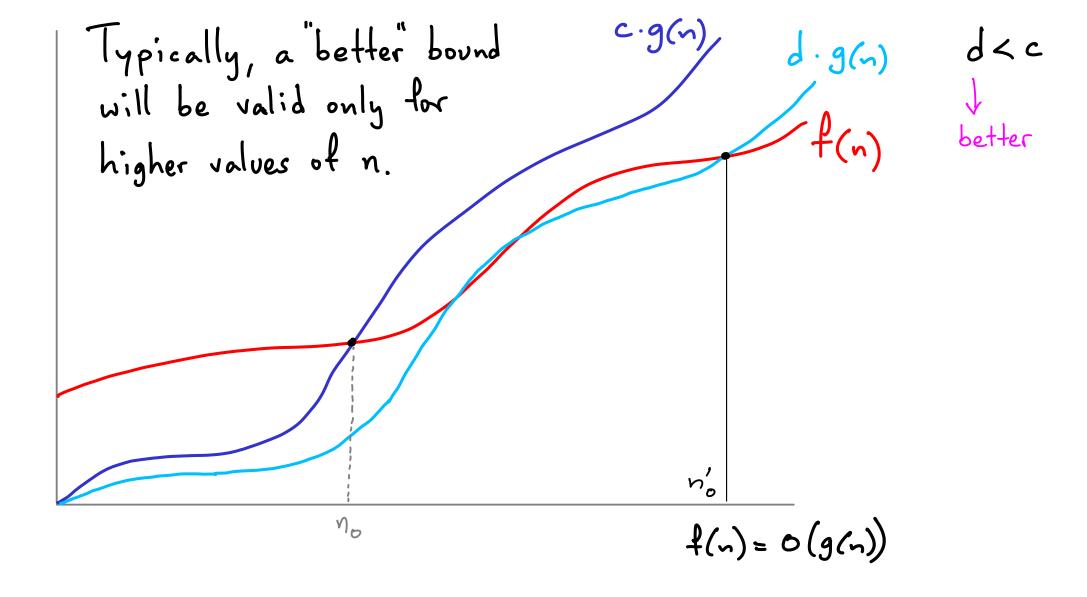
We can also get asymptotic lower bounds this way

Then $f(n) = \Omega(g(n))$

e.g. $\frac{1}{5}n^2 = \Omega(n)$ [but also $\Omega(n^2)$]



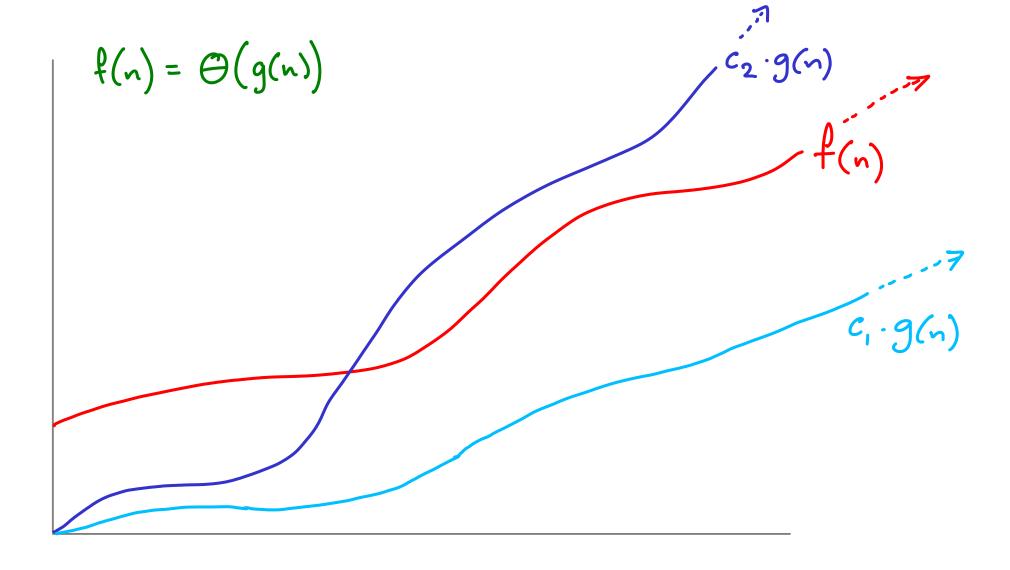




if
$$f(n) = O(g(n))$$

and $f(n) = \Omega(g(n))$

then
$$f(n) = \Theta(g(n))$$



Prove
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

$$\Rightarrow \text{prove} = O(n^2) \Rightarrow \text{find } c_1 & n_1 \text{ s.t. } \frac{1}{2}n^2 - 3n \leq c_1 \cdot n^2 \text{ for } n_1 \cdot n_1$$

$$\Rightarrow \frac{1}{2}n^2 - 3n < \frac{1}{2}n^2 \Rightarrow c_1 = \frac{1}{2} \text{ and } n_1 = 1 \text{ work}$$

$$\text{[or more]} \text{[or more]}$$

$$\Rightarrow \text{prove} = \Omega(n^2) \Rightarrow \text{find } c_2 & n_2 \text{ s.t. } \frac{1}{2}n^2 - 3n \geq c_2 \cdot n^2 \text{ for } n_1 \cdot n_2$$

$$\Rightarrow \frac{1}{2} - \frac{3}{n} > c_2 \Rightarrow \text{for } n \leq 6, c_2 \leq 0 \text{ invalid}$$

$$\Rightarrow \text{choose } n_2 = 7 & c_2 = \frac{1}{14}$$

$$\Rightarrow \text{choose } n_2 = 7 & c_2 = \frac{1}{14}$$

Combine: for
$$n \geqslant 7$$

we have $c_1 \& c_2 \text{ s.t.}$

$$c_2 \cdot n^2 \leqslant \frac{1}{2}n^2 - 3n \leqslant c_1 \cdot n^2$$

Note: if we choose $n_2 = 7 \& c_2 = \frac{1}{14}$

$$c_2 \cdot n^2 \leqslant \frac{1}{2}n^2 - 3n \leqslant c_1 \cdot n^2$$

Note: if we choose $n_2 = 30$ then $c_2 \leqslant 0.4$ works.

In fact we can get $c_2 \rightarrow \frac{1}{2}$ if $n_2 \rightarrow \infty$

6n3 > c, n -> trivially true for n>1 & c,=6 is $6n^3 = O(n^2)$? $\rightarrow 6n^3 \le c_2n^2$? $\frac{N0}{N} \leq \frac{C_2}{6}$ \(\frac{2}{6} \) \(\frac{2}{6} \) \(\frac{2}{6} \) Whatever constant c2 we choose, n will eventually surpass it.

if it were true, then $c_1 n^2 \le 6n^3 \le c_2 n^2$ for $n > n_0$

Prove $6n^3 \neq \Theta(n^2)$

$$\log(n!) = O(n \log n)$$

$$\log(n!) \leq \log(n^n) = n \log n \Rightarrow \log(n!) \leq 1 \cdot n \log n \text{ for } n \geq 1$$

$$\log(n!) = O(n \log n)$$

$$\log(n!) = \log(n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot 3 \cdot 2 \cdot 1)$$

$$= \log(n \cdot 1 \cdot (n-1) \cdot 2 \cdot (n-2) \cdot 3 \cdot (n-3) \cdot 4 \cdot \dots \cdot (n-\frac{n}{2}) \cdot (n-\frac{n}{2})$$

$$\geqslant \log(n \cdot n \cdot n \cdot n \cdot n \cdot \dots \cdot n \cdot n)$$

$$= \log(n^{1/2}) \xrightarrow{\text{(assume } n \cdot \text{even)}} \Rightarrow \log(n!) \geq \frac{n}{2} \log n$$

$$\Rightarrow \log(n!) \leq \log(n!) \leq n \log n$$

$$\Rightarrow \log(n!) \leq n \log n$$