PROOF BY INDUCTION

Used:
- When you want to prove something is true for all natural numbers.
- When a direct proof looks hard.
- When you might want to prove the statement using smallest counterexample. (We will see why)

Example: Prove that $3 \mid 4^n - 1$ for all $n \in \mathbb{N}$.

First, we prove "$3 \mid 4^0 - 1$ for $n = 0$." **BASIS STEP**

Second, we prove "**IF** $3 \mid 4^n - 1$, then $3 \mid 4^{n+1} - 1$" **INDUCTIVE STEP**

Thm: $\forall n \in \mathbb{N}, 3 \mid 4^n - 1$.

Pf: If $n = 0$, then $4^0 - 1 = 0 - 1 = -1 = 0 \cdot 3$. So $3 \mid 4^0 - 1$. **BASIS STEP**

Now assume $3 \mid 4^n - 1$ and $1 \leq n$. **INDUCTIVE HYPOTHESIS**

So $\exists a \in \mathbb{Z}$ such that $3a = 4^n - 1$.
So $3 \cdot 4a = 4 \cdot (4^n - 1) = 4^{n+1} - 4$.
So $3 \cdot 4a + 3 = 4^{n+1} - 1$ and $3(4a+1) = 4^{n+1} - 1$.
So $3 \mid 4^{n+1} - 1$.

Then by induction, $3 \mid 4^n - 1 \forall n \in \mathbb{N}$. \Box

GENERAL FORM:

Thm: $\forall n \in \mathbb{N}$ (statement about n)

Pf: If $n = 0$, then (statement about n) is true. **BASIS STEP**

Now assume (statement about $n-1$) is true and let **INDUCTIVE HYPOTHESIS**

::

So (statement about n) is true.
Then by induction, (statement about n) is true $\forall n \in \mathbb{N}$. \Box
Why does proof by induction work?

\[n: 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ldots \]

INDUCTIVE STEP

BASIS STEP: Statement true for \(n=0 \).

INDUCTIVE STEP: Statement true for \(n-1 \) \(\Rightarrow \) statement true for \(n \).

So for any specific value of \(n \) (say \(n=100 \)),

- statement true for \(n=0 \) \(\Rightarrow \)
 - statement true for \(n=1 \) \(\Rightarrow \)
 - statement true for \(n=2 \) \(\Rightarrow \)
 - \ldots
 - statement true for \(99 \) \(\Rightarrow \)
 - statement true for \(n=100 \)

So statement true for \(n=0 \) \(\Rightarrow \) statement true for \(n=100 \)

[Also statement is true for \(n=0 \).]

So statement is true for \(n=100 \). **IMPLIED BY BASIS AND INDUCTIVE STEP**

Thus: \(\forall n \in \mathbb{N}, \sum_{i=0}^{n} 3^i < 3^{n+1} \).

Pf: For \(n=0 \), \(\sum_{i=0}^{0} 3^i = 3^0 = 1 < 3 = 3^{n+1} \)

BASIS STEP

INDUCTIVE STEP

Assume \(\sum_{i=0}^{n-1} 3^i < 3^{n+1} \), \(1 \leq n \).

Then \(\sum_{i=0}^{n} 3^i = 3^n + \sum_{i=0}^{n-1} 3^i < 3^n + 3^n = 2 \cdot 3^n < 3 \cdot 3^n = 3^{n+1} \).

Then by induction, \(\sum_{i=0}^{n} 3^i < 3^{n+1} \) \(\forall n \in \mathbb{N} \). \(\blacksquare \)
Thm: \(\forall n \in \mathbb{N}, \sum_{i=0}^{n} 3^i < 3^{n+1} \)

Pf: Suppose, by contradiction, that this is not true. Let \(n \in \mathbb{N} \) be the smallest counterexample.

So \(\sum_{i=0}^{n} 3^i \geq 3^{n+1} \) and \(\sum_{i=0}^{k} 3^i < 3^{k+1} \). Also, \(\sum_{i=0}^{0} 0^i = 0 < 3^0 = 3 \).

So \(\sum_{i=0}^{n-1} 3^i + 3^n < 3^n + 3^n = 3^{n+1} \)

So \(\sum_{i=0}^{n} 3^i \), a contradiction with \(\sum_{i=0}^{n} 3^i \geq 3^{n+1} \).

So \(\forall n \in \mathbb{N}, \sum_{i=0}^{n} 3^i < 3^{n+1} \). \(\square \)

SMALLEST COUNTEREXAMPLE \(\Rightarrow \) INDUCTION

INDUCTION:

IF (statement about \(n=0 \)) and ((statement about \(n-1 \)) \(\Rightarrow \) (statement about \(n \))),

then \(\forall n \in \mathbb{N} \), (statement about \(n \)).

SMALLEST COUNTEREXAMPLE:

IF (statement about \(n=0 \)) and \(\neg \) ((statement about \(n-1 \)) \(\land \) (statement about \(n \))),

then \(\forall n \in \mathbb{N} \), (statement about \(n \)).

SMALLEST COUNTEREXAMPLE \(\Rightarrow \) INDUCTION
by BOOLEAN ALGEBRA.
Thus: \(\forall n \in \mathbb{N}, n \geq 5, 2^n > n^2 \)

Proof: By smallest counterexample.

Base Step

\[2^5 = 32 > 25 = 5^2, \text{ so smallest counterexample is } n \geq 5. \]

Assume \(2^n \leq n^2 \) and \(2^{n-1} > (n-1)^2 \) and \(n \geq 5 \).

So \(2^{n-1} > (n-1)^2 = n^2 - 2n + 1 \)

\[
2^n > 2n^2 - 4n + 2 = n^2 + (n^2 - 4n + 2) \\
\geq n^2 + (n^2 - 4n - n) \text{ since } n \geq 2 \\
\geq n^2 + (n^2 - 5n) \\
\geq n^2 + (n(n-5)) \\
\geq n^2 + (n) \text{ since } n \geq 5 \\
> n^2 \text{ since } n \geq 1.
\]

So \(2^n > n^2. \) But also \(2^n \leq n^2. \) A contradiction.

Removing the \(\cdots \) parts of the proof converts it from *SMALLEST COUNTEREXAMPLE* to *INDUCTION*.

Also possible to covert *INDUCTION* to *SMALLEST COUNTEREXAMPLE*.

Recall that the following theorem can be proven by smallest counterexample.

Thus: For \(n \in \mathbb{N}, F_n \leq 1.7^n \) where \(F_n \) is \(n \)th Fibonacci number.

But had to use that \(F_{n-2} \leq 1.7^{n-2} \), not just that \(F_{n-1} \leq 1.7^{n-1} \)

So first had to prove smallest counterexample is \(n \geq 2. \)
Thm: Let \(F_n \) be the \(n \)th Fibonacci number. Then \(F_n \leq 1.7^n \).

Proof: \(F_0 = 1 \leq 1.7^0, F_1 = 1 \leq 1.7^1 \). \[\text{Basis} \]

\[\text{Inductive Hypothesis} \]

Assume \(2 \leq n \) and \(F_{n-1} = 1.7^{n-1}, F_{n-2} = 1.7^{n-2} \).

So \(F_n = F_{n-1} + F_{n-2} \leq 1.7^{n-1} + 1.7^{n-2} = (1.7 + 1.7) \cdot 1.7^{n-2} \leq 1.7^n \).

Then by induction, \(\forall n \in \mathbb{N}, F_n \leq 1.7^n \). \[\Box \]

Wut? We can have an inductive hypothesis that is more than "(statement for \(n-1 \)). But the basis step must support it.

Conjecture: \(\forall n \in \mathbb{N}, 2^n = 1 \).

Invalid proof: Let \(n = 0 \). So \(2^n = 2^0 = 1 \). \[\text{Basis} \]

\[\text{Inductive Hypothesis} \]

Assume \(2^{n-1} = 1, 2^{n-2} = 1 \). \[\text{Inductive} \]

So \(2^n = \frac{2^{n-1} \cdot 2^{n-2}}{2^{n-2}} = \frac{1 \cdot 1}{1} = 1. \)

Then by induction, \(\forall n \in \mathbb{N}, 2^n = 1. \)

Missing part of basis step used in inductive step.
STRONG INDUCTION

In a proof by induction, the inductive step can use an inductive hypothesis of “∀k∈N, 0≤k≤n (statement about k)” rather than “(statement about n−1)”. Why is this allowed?

If we can assume “(statement about n=5)”, we must also be able to assume “(statement about n=4), ..., (statement about n=0)”. This form of induction with an inductive hypothesis that the statement is true for all smaller values of n is called

STRONG INDUCTION

Thm: ∀n∈N, 2∤n, n is a product of primes.

Proof: 2 is prime, so n≠2 is a product of 1 prime: 2. **[Basis]**

Assume ∀k∈N, 2∤k<n is a product of primes. **[Inductive Hypothesis]**

- If n is prime, then n is a product of 1 prime: n.
- If n is not prime, n is composite, so n=ab with a,b∈N, 1≤a,n.
 - Since a≤n and a,n are positive, b≥2.
 - So a and b are both products of primes.
 - So their product, n, is also a product of primes.

Then by induction, ∀n∈N, 2∤n, n is a product of primes. ⊥
THE RULES OF INDUCTION

1. Two parts: basis step and inductive step.

2. Basis step must prove statement holds for all values of \(n \) used by inductive step that aren't proved by inductive step.

3. Inductive step proves that if the statement is true for some smaller values of \(n \), then it is true for this value of \(n \).

4. Inductive step can use inductive hypothesis that assumes statement is true for all smaller values of \(n \). (Strong induction)

5. Inductive step also can assume \(n \) is larger than values covered by the basis step.

Thm: \(\forall n \in \mathbb{N}, 12 \leq n, \exists a, b \in \mathbb{N} \text{ such that } n = 4a + 5b. \)

Pf: \(12 = 4 \cdot 3 + 5 \cdot 0. \) [Basis]

\[
\text{Inductive:}
\begin{align*}
\text{Assume } 12 \leq n \text{ and } \exists a, b \in \mathbb{N} \text{ such that } n-1 = 4a + 5b. \quad \text{(I.H.) (Weak)}
\end{align*}
\]

If \(a \geq 0 \), then \(n = 4(a-1) + 5(b+1) \) with \(a-1, b+1 \in \mathbb{N} \).

If \(a = 0 \), then \(b \geq 3 \) and \(n = 4(a+4) + 5(b-3) \) with \(a+4, b-3 \in \mathbb{N} \).

So in either case \(\exists a', b' \in \mathbb{N} \text{ such that } n = 4a' + 5b'. \)

Then by induction, \(\forall n \in \mathbb{N}, 12 \leq n, \exists a, b \in \mathbb{N} \text{ such that } n = 4a + 5b. \) \(\square \)

Pf: \(12 = 4 \cdot 3 + 5 \cdot 0. \) \(13 = 4 \cdot 2 + 5 \cdot 1. \) \(14 = 4 \cdot 1 + 5 \cdot 2. \) \(15 = 4 \cdot 0 + 5 \cdot 3. \) [Pf:

\[
\text{Inductive:}
\begin{align*}
\text{Assume } 15 \leq n \text{ and } \exists a, b \in \mathbb{N} \text{ such that } n-4 = 4a + 5b. \quad \text{(I.H.) (Strong)}
\end{align*}
\]

So \(n = 4(a+1) + 5b \).

So \(\exists a', b' \in \mathbb{N} \text{ such that } n = 4a' + 5b'. \)

Then by induction, \(\forall n \in \mathbb{N}, 12 \leq n, \exists a, b \in \mathbb{N} \text{ such that } n = 4a + 5b. \) \(\square \)
EXERCISE

Prove by induction that \(\forall n \in \mathbb{N}, \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).

Let \(n=0 \). Then \(\sum_{i=1}^{0} i = 0 = \frac{0(0+1)}{2} \). [**B**A**S**I**S**

Assume \(\sum_{i=1}^{n-1} i = \frac{(n-1)n}{2} + 1 \leq n \). [I.H.]

Inductive

So \(\sum_{i=1}^{n} i = \frac{(n-1)n}{2} + n = \frac{n^2 - n + 2n}{2} = \frac{n^2 + n}{2} = \frac{n(n+1)}{2} \).

So \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).

Then by induction, \(\forall n \in \mathbb{N}, \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \). \(\square \)

These are triangulated simple polygons with ears.

Define: An ear of a triangulated polygon is a triangle with two boundary edges and one triangulation edge.
Two-Ear Theorem: Every triangulated simple polygon with \(\geq 4 \) sides has at least two ears. \(\text{t.s.p.} \)

Proof: By induction.

Basis Step
- Every t.s.p. with 4 sides has 1 diagonal and two triangles. So both triangles have 2 boundary edges and 1 triangulation edge.

![Basis Step Diagram]

Now consider a t.s.p. \(P \) with \(n \geq 4 \) sides. Pick an edge \(e \) of the triangulation, and split the t.s.p. \(P \) into two t.s.p.s with fewer sides, \(A \) & \(B \).

![Inductive Step Diagram]

Assume that every t.s.p. with fewer than \(n \) and at least 4 sides has two ears. \(A \) and \(B \) are either triangles or t.s.p.s with between 4 and \(n-1 \) sides.

Inductive Hypothesis

Inductive Step
- If \(A \) is a triangle, then \(A \) is an ear in \(P \).
- Otherwise \(A \) has two ears, and one does not have \(e \) as a side. This ear is an ear in \(P \).
- So \(A \) contains an ear of \(P \). By symmetry, so does \(B \).
- So \(P \) contains at least two ears.

Then by induction, every t.s.p. with \(\geq 4 \) sides has at least two ears.
EXERCISE

Prove by induction if $n \in \mathbb{N}$ and n is odd, then $8 \mid n^2 - 1$.

Let $n=1$. Then $n^2 - 1 = 1^2 - 1 = 0$. Since $8 \mid 0$, $8 \mid n^2 - 1$. \textbf{Basis}

Assume $n \geq 3$ and n is odd. Also, assume $8 \mid (n-2)^2 - 1$ since $1 \leq n-2 \leq n-2$ odd.

Since $n \geq 3$ and n is odd, $n = 2a+1$ for some $a \in \mathbb{Z}$, $a \geq 1$.

So $n - 2 = 2a - 1$.

So $8 \mid (2a-1)^2 - 1$.

So $8 \mid 4a^2 - 4a - 1$.

So $8 \mid 4a^2 - 4a - 1$.

So $8 \mid 4a^2 - 4a - 1$.

Then by induction, $\forall n \in \mathbb{N}$, n odd, $8 \mid n^2 - 1$. \(\Box\)

CHALLENGE

Prove by induction and by smallest counterexample that $\forall n \in \mathbb{N}, 1 \leq n, 133 \mid 11^{n+1} + 12^{2n-1}$.

\textbf{Basis} [Let $n=1$. Then $11^{n+1} + 12^{2n-1} = 11^2 + 12 = 133$. So $133 \mid 11^{n+1} + 12^{2n-1}$.

Assume $2 \leq n$ and $133 \mid 11^n + 12^{2n-3}$, \textbf{I.H.}

So $133 \mid 11^{n+1} + 12^{2n-1}$.

So $133 \mid 11^{n+1} + 12^{2n-3}$.

So $133 \mid 11^{n+1} + 12^{2n-3}$.

Then by induction, $\forall n \in \mathbb{N}, 1 \leq n, 133 \mid 11^{n+1} + 12^{2n-1}$, \(\Box\).