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1 A Nice Conjecture
Last lecture someone in the audience gave the following conjecture:

Conjecture. Let A and B be sets. If A−B = B −A, then A = B.

I sort of danced around it, some people seemed to have an intuition that it was
true. I would not expect people to necessarily be able to come up with a proof of this
conjecture on a homework or test, but here is a proof for fun, starting with a preliminary
theorem we call a lemma1:

Lemma. Let A and B be sets. If A−B = B −A, then A−B = B −A = {}.

Proof. Let A and B be sets with A−B = B−A. Since every element in B−A is an
element of B, B−A ⊆ B. So A−B = B−A ⊆ B. Since A−B ⊆ B, every element
x ∈ A − B is also in B. But by definition of set difference, every element x ∈ A − B
is not in B. So there must be no elements in A−B, and A−B = B −A = {}.

The lemma is kind of interesting on its own. Now we prove the conjecture, recalling
the lemma in the proof:

Theorem. Let A and B be sets. If A−B = B −A, then A = B.

Proof. Let A and B be sets with A − B = B − A. Then by the previous lemma,
A − B = B − A = {}. Let x ∈ A. Since A − B = {}, x must also be in B. So
x ∈ A⇒ x ∈ B and so A ⊆ B. Now let x ∈ B. Since B −A = {}, x must also be in
A. So x ∈ B ⇒ x ∈ B and so B ⊆ A. So A = B.

A nice conjecture theorem.

2 Cartesian Product
In the last lecture we introduced lists or k-tuples, ordered collections of elements (al-
lowing repeats). We now introduce an idea combining lists and sets:

1A lemma is just a helpful theorem. Calling a statement a lemma rather than a theorem is just a literary
device to communicate that it will be used later.
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Definition. The Cartesian product of two sets A and B, written A×B, is {(x, y) : x ∈
A, y ∈ B}

Notice that the Cartesian product of two sets is another set, but with elements that
are ordered pairs of objects in A and B. This makes the Cartesian product different
than other set operators like union, intersection, etc. Moreover, the Cartesian product
does not obey basic rules like commutativity and associativity found in some other set
operators.

The Cartesian product will come in later lectures, but we observe here that if each
set denotes options for a choice, then the Cartesian product is the set of all sequences
of choices. In other words, the Multiplication Rule for k = 2 sets can be proved using
the following theorem on Cartesian products:

Theorem. Let A and B be two finite sets. Then |A×B| = |A| × |B|.

3 Relations
Today we consider relations, which are meant to be an generalization of relationships
between objects, such as =, ≥, ≤, and ⊆. Relations describe relationships between
elements of a single set, e.g. ≥ is defined on Z, but can also be describe relationships
between elements of two different sets, e.g. “has absolute value” is defined on Z and
N.

Let’s consider the case of a single set first, as it is more common. Relations are
defined by a set of pairs (lists of length 2) that specify which pairs of elements are
related. For instance, ≥ can be described as a relation on the set Z containing the pair
(4, 0) (since 4 ≥ 0) but not (2, 3) (since 2 6≥ 3). Formally, a relation on a set A is just
a subset of the Cartesian product of A:

Definition. A relation on a set A is a set R ⊆ A×A.

Similarly, a relation between sets A and B is a subset of A × B, i.e. a set of pairs
(a, b), where a ∈ A and b ∈ B. If two elements a ∈ A and b ∈ B are related by a
relation R, we write aRb, even though R is actually a set of ordered pairs. We also
define the inverse of a relation R, the set of ordered pairs obtained by swapping the
elements in the ordered pairs of R:

Definition. The inverse of a relation R on a set A, written R−1, is {(b, a) ∈ A × A :
(a, b) ∈ R}.

This comes up with related relations, like ≥ and ≤, that are sometimes inverses of
each other. In the study of relations, there are several properties that relations can have
that are useful to name. This gives us some options to talk about how different relations
are similar. Here are some good ones:

1. A relation R on a set A is reflexive provided ∀a ∈ A, (a, a) ∈ R.

2. A relation R on a set A is irreflexive provided ∀a ∈ A⇒ (a, a) 6∈ R.

2



3. A relation R on a set A is symmetric provided ∀a, b ∈ A, (a, b) ∧ a 6= b ⇒
(b, a) ∈ R.

4. A relation R on a set A is antisymmetric provided ∀a, b ∈ A, (a, b) ∈ R ∧ a 6=
b⇒ (b, a) 6∈ R.

5. A relation R on a set A is transitive provided ∀a, b, c ∈ A, (a, b) ∈ R ∧ (b, c) ∈
R⇒ (a, c) ∈ R.

Some of these properties you’ve seen before. The operator = for pretty much any
set you can think of is reflexive (wouldn’t it be weird of x 6= x?) A relation R is
symmetric if swapping the elements on both sides preserves the relationship (aRb iff
bRa), not found in≥, ≤, or other operators that suggest an ordering on the elements of
the set. Transitivity is found in many common algebraic operators, but not in relations
like “have difference at most 5”, since |5−0| ≤ 5 and |−5−0| ≤ 5, but |5−−5| 6≤ 5.
Antisymmetry is found in ≤, <, and other operators that suggest an ordering.

But be careful! A relation can be neither reflexive nor irreflexive, and can also
be both symmetric and antisymmetric. The relation R = {(1, 1), (2, 2)} on the set
A = {1, 2, 3} is not reflexive ((3, 3) 6∈ R), not irreflexive ((1, 1) ∈ R), symmetric
(vacuously true since no (a, b) ∈ R with a 6= b exists), and antisymmetric (also vacu-
ously true). The takeaway is just that the properties aren’t really opposites, even though
they sound complementary in English.

Let’s do an example for determining whether some rando relation on a set has any
or all of these five properties. Let R = {(1, 1), (1, 2), (2, 1), (3, 4), (4, 3)} be a relation
on the set A = {1, 2, 3, 4, 5}. Now check the various properties:

1. R is not reflexive, since (2, 2) 6∈ R.

2. R is symmetric, since (1, 2) and (2, 1) are in R, as are (3, 4) and (4, 3). (Why
does the definition not require a 6= b?)

3. R is not transitive, since (3, 4) and (4, 3) are in R, but (3, 3) is not.

4. R is not antisymmetric, since (1, 2) and (2, 1) are in R, and 1 6= 2.

5. R is not irreflexive, since (1, 1) ∈ R.

Ok, not so bad, just needs some care. As an aside, the book defines antisymmetry
as (a, b) ∈ R ∧ (b, a) ∈ R ⇒ a = b. Why is this equivalent to the definition here?
Consider the following theorem (about Boolean algebra!):

Theorem. (p ∧ q)→ r = (p ∧ ¬r)→ ¬q

Proof. We give the proof as a series of equalities:
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(p ∧ q)→ r = (¬(p ∧ q)) ∨ r by previous notes

= (¬p ∨ ¬q) ∨ r by DeMorgan′s

= ¬p ∨ (¬q ∨ r) by associativity

= ¬p ∨ (r ∨ ¬q) by commutativity

= (¬p ∨ r) ∨ ¬q by associativity

= ¬(p ∧ ¬r) ∨ ¬q by DeMorgan′s

= (p ∧ ¬r)→ ¬q by previous notes
So the two expressions are equal by the transitivity of equality.

Now notice that if A = “(a, b) ∈ R”, B = “(b, a) ∈ R”, and C = “a = b”, then
the book’s definition is A ∧B ⇒ C and our definition is A ∧ ¬C ⇒ ¬B. Then by the
previous theorem, these definitions are equal.

4 Equivalence Relations
In some cases, people look for a relation on weird objects that behaves like a familar
relation on more standard object. The most common situation is trying to define a
relation that behaves like =. What relation properties does = on, say, Z have? The
relation = is reflexive, since a = a for all a ∈ Z, symmetric, since a = b⇒ b = a for
any a, b ∈ Z, and transitive, since a = b ∧ b = c ⇒ a = c for any a, b, c ∈ Z. On the
other hand, = is not irreflexive or antisymmetric.

If you consider other objects on which = is defined (other types of numbers, sets,
matrices, lists, etc.), they are all reflexive, symmetric, and transitive. Any relation with
this trio of properties really behaves a lot like = does, and we call any such relation an
equivalence relation:

Definition. A relation R on a set A is an equivalence relation provided R is reflexive,
symmetric, and transitive.

Consider evenness on the integers, e.g. 2 and 6 have the same evenness (they are
even), as do 3 and 5 (they are not even), while 2 and 7 do not (one is even and the other
is not). Evenness is clearly reflexive (any number has the same evenness as itself),
symmetric (a has the same evenness as b implies b has the same evenness as a), and
transitive (a has the same evenness as b and b has the same evenness as c implies a and
c has the same evenness). Evenness then works like equality, but rather than integers
where each a ∈ Z is on its own (no two are equal), evenness puts all the integers in two
piles: integers that are even and integers that are not. These piles split up or partition
the integers, and we’ll talk about these tiles later. For right now, the takeaway is that
equivalence relations look like equality, but possibly permitting many objects in the set
to be equivalent to each other.

A very common example of an equivalence relation with applications across math
and computer science is congruence mod n, where n is some natural number:

Definition. For any n ∈ N and a, b ∈ Z are congruent mod n, written a ≡ b mod n,
provided n|a− b.
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It is uncommon to see the situations n = 0 or n = 1 (Why?) On the other hand,
congruence mod 2 should look familar – it is evenness! Congruence mod n is an
equivalence relation for any n ≥ 1. Let’s prove this:

Theorem. For any n ∈ N, congruence mod n is an an equivalence relation on Z.

Proof. Let R = {(a, b) ∈ Z×Z : a ≡ b mod n}. For any a ∈ Z, a− a = 0 = 0× n,
so n | a− a. So (a, a) ∈ R and so R is reflexive.

For any (a, b) ∈ R with a 6= b, n | a − b. So there exists a c ∈ Z such that
cn = a−b. So−cn = b−a. So n | b−a and (b, a) ∈ R. So (a, b) ∈ R⇒ (b, a) ∈ R.
So R is symmetric.

Now let (a, b) ∈ R and (b, c) ∈ R. So n | a−b and n | b−c. So there exists c, d ∈ Z
such that cn = a− b and dn = b− c. So (c+ d)n = cn+ dn = a− b+ b− c = a− c.
So n | a − c and so (a, c) ∈ R. So (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R. So R is
transitive.

In conclusion, R is reflexive, symmetric, and transitive. So R is an equivalence
relation.

5 Partial Orders: A Use for Relations
In lecture, I challenged someone to give a definition of≥ that wasn’t based on relations
to give some motivation for defining and studying relations. As a response, I got a very
nice one using subtraction and sets, and so lost my motivation for why we care about
general relations and their properties. I mean, ≥ and > are both antisymmetric and =
and congruence mod n are both reflexive, but how much can be done with knowing
this?

Imagine you had a whole bunch of teams (sports? or could be something else), and
these teams have various levels of skill. Then an interesting relation would be “has won
against” on the set of teams. So the pair (Team 7,Team 4) showing up in the relation
means “Team 7 has won against Team 4.”

Some properties are easy to determine, like reflexiveness (no), irreflexiveness (yes).
Symmetry is possible, but only teams always trade wins when they play. Antisymmetry
is also possible if the teams are consistent and always either win or lose when they play
the same team. But something in the middle is more likely (some teams dominate
others, some trade wins).

And transitivity? Suppose all teams are forced to play each other. Then if Team 1
beats Team 2, Team 2 beats Team 3, and Team 3 beats Team 1 every time they play then
no transitivity ((Team 1,Team 2) and (Team 2,Team 3), but no (Team 1,Team 3)).
But if teams all play each other and can be ranked, and win against all lower-ranked
teams and lose against higher-ranked teams, then transitivity comes back.

Imagine I don’t tell you exactly what teams played each other or won/lost, but
only that “has won against” is transitive. Then it turns out there’s always a way to
assign team rankings such that any game between two teams has the high-ranked team
winning. This assignment is called a (strict) partial order and is guaranteed to exist
only from knowing “has won against” is transitive (and irreflexive). Kind of nice (go
team transitivity).
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6 Partitions
We finish by considering a side effect of equivalence relations: they separate elements
of the set into groups (called partitions) that are all related to each other.

Definition. A partition of a set A is a set of pairwise-disjoint non-empty subsets of A
whose union equals A.

The set A = {1, 2, 3, 4, 5} has a partition {{1, 5}, {2}, {3, 4}}, a partition {{1, 2, 3, 4}, {5}},
a partition {{1}, {2}, {3}, {4}, {5}}, etc. (How many are there? Not an easy question.)
A partition is just a way to split A into parts, with each element of A going into ex-
actly one part. Partitions of a set A and equivalence relations on A share a special
connection.

Recall that for the equivalence relation congruence mod n on the set Z, each integer
in Z belonged to a group of equivalent integers. For n = 2, these groups were the even
and odd integers, while for n = 3 they are the number equivalent to 0 mod 3, 1 mod 3,
and 2 mod 3. We call these groups equivalence classes:

Definition. An equivalence class of an equivalence relation R on a set A is the set of
all elements of A equivalent to each other under R.

Hold up; how do we even know these tidy classes exist where all the elements are
equivalent to each other? If we have a, b ∈ A such that (a, b) ∈ R, what’s to say that
there isn’t some c ∈ A such that (a, c) ∈ R but (b, c) 6∈ R? Well, the symmetry and
transitivity of R gives us this, since if (a, b) ∈ R, then (b, a) ∈ R, and since (b, a) ∈ R
and (a, c) ∈ R, then (b, c) ∈ R. Moreover, each element a ∈ A goes in some class,
since a = a, so it goes in the class containing itself. Suffice to say, the following is
true:

Theorem. Let A be a set. For every partition of A there exists a equivalence relation
on A and vice versa.

We’ll see later how partitions are useful to solve some counting problems. As a
teaser, consider the number of permutations of a set of elements, some of which are
not distinct, e.g. the permutations of the objects 1, 1, 2, 2. Let me “mark” the objects
to differentiate the equivalent ones: 1, 1′, 2, 2′. Counting permutations, (1, 1′, 2, 2′) is
different than (1, 2, 1′, 2′), but the same as (1′, 1, 2′, 2), since 1 and 1′ don’t count as
different in the permutation.

To count these, we treat repeated elements as equivalent with their own order just
among themselves, e.g. 1′ then 1 in the permutation (1′, 2, 2′, 1). Then the total num-
ber of permutations of k things is k! divided by the number of ways to reorder the
equivalent objects. The example here has 4!

2!2! permutations, since there are 4 objects
with 2 equivalence classes (1 and 2), each of size 2. For the set 1, 1′, 1′′, 2, 2′′, there
would be 5!

3!2! permutations, since the equivalence class 1 now has 3 items. We’ll go
into more detail and example later, so don’t worry if you don’t quite follow this brief
intro.
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