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1 Definitions
Definitions are the starting point for all mathematical reasoning. Here is a defintion:

Definition. An integer n is even provided n it is divisible by 2.

This defintion uses other terms that are ambiguous. What is an integer? What does
it mean to be divisible?

Definition. An integer is a number in the infinite set Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

Now we have more problems. What is a set? What does it mean for something
to be infinite? What does . . . mean? These are complex issues we will consider now.
Instead, we simply say “integers are whole numbers” and rely on common sense. For
instance, 5 is an integer, -57 is an integer, 0 is an integer. But 3

4 is not, nor is
√
2, π,

etc.
On the other hand, divisible isn’t so intuitive, and needs a definition:

Definition. An integer n is divisible by an integer a provided there is an integer b such
that ab = n.

For instance, 12 is divisible by 4 since 4 · 3 = 12, i.e. n = 12, a = 4, and b = 3.
On the other hand, 12 is not divisible by 5, since there is no integer b such that 5b = 12.
We use the notation a | n to mean “n is divisible by a”, and a - n to mean “n is not
divisible by a”.

Often times there are multiple defintions surrounding the same idea. In this case
we can define these addition terms using previously definitions:

Definition. An integer a is said to be a divisor or factor of n if n is divisible by a.

Now let’s build some more interesting definitions that we can use later to say inter-
esting things about integers.

Definition. An integer n is odd provided there is an integer a such that n = 2a+ 1.

Definition. An integer n is composite provided that n > 1 and there is some integer a
with 1 < a < n such that a | n.

1



Is 9 composite? 9 > 1 and a = 3 is a number with 1 < a < 9 such that a | 9. So
9 is composite. On the other hand, 5 is not composite, since for all potential values of
a with 1 < a < 5, namely 2, 3, and 4, it is not the case that a | 5. To complement the
definition of composite numbers, we introduce a name for integers larger than 1 that
are not composite:

Definition. An integer n is prime provided that n > 1 and for each integer a with
1 < a < n, a - n.

Is 3 prime? 3 > 1 and for the only integer a with 1 < a < 3, namely 2, a - 3. So
yes, 3 is prime. Is 10 prime? 10 > 1, but there is an integer a = 5 with 1 < a < 10
such that it is not the case that a - 10. So 10 is not prime. Is 2 prime? 2 > 1, but there
is no integer a with 1 < a < 2. So it is the case that for each integer b with 1 < a < 2,
b - x.

Does this last result seem weird? The statement “for each integer awith 1 < a < 2,
a - 2” is true because there is no such a. Lame. We call such a statement vacuously
true. Here’s another vacuously true statement: all negative prime numbers are even.
No prime numbers are negative, so all the negative ones are even – although it may
seem like a silly statement, it is a true statement.

2 Theorems
We just talked about a few statements regarding objects we defined, like divisibility
and what it means for an integer to be prime. In mathematics, such statements that are
true are called theorems. Here’s a theorem:

Theorem. If an integer n is even, then n+ 1 is odd.

Theorems usually have the if-then form: “If A, then B.”, where A and B are called
the hypothesis and conclusion, respectively. For the previous theorem, A = “an integer
n is even” and B = “n+ 1 is odd”. As shorthand, we denote theorems of this form as
A ⇒ B. The “If A, then B.” statement can also be written as “A only if B” and “A
implies B”.

If we have a theorem A ⇒ B that is true, what does this mean? It means that if
A is true, then B is true. For instance, if n = 2, then the previous theorem says that
n+1 = 3 is odd. But if n = 3 (and thus x is not even), then the theorem says nothing.

Consider the four combinations of truth values for A and B:

A B Possible if A⇒ B
True (n is even) True (n+ 1 is odd) Yes
True (n is even) False (n+ 1 is not odd) No

False (n is not even) True (n+ 1 is odd) Yes
False (n is not even) False (n+ 1 is not odd) Yes

If the hypothesis A is always false (e.g. A = “n is a negative prime.”) then only
the last two combinations occur. In this is the case we call the theorem vacuous. All
vacuous theorems are true.
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The A andB statements can be simple, but may also be composed of combinations
of smaller statements conjoined with “and” or “or”. For instance:

Theorem. If an integer n is prime and odd, then n ≥ 3.

In this case, the theorem still has the if-then form with A⇒ B, but A = C and D,
where C = “n is prime” and D = “n is odd”. In other words, the theorem is
C and D ⇒ B. An and-statement is defined to be true if both halves are true, and
false otherwise:

A B A and B
True True True
True False False
False True False
False True False

An or-statement is similar:

Theorem. If an integer n is prime or composite, then n > 1.

Unlike some usages in English, an or-statement even if both halves are true:

A B A or B
True True True
True False True
False True True
False True False

A statement can also be negated using “not”, like in English:

Theorem. If an integer n is not even, then n is odd.

A not A
True False
False True

Finally, we consider a special case of composing two if-then statements. It may
seem strange to compose if-then statements, but they are statements like any other and
can be used as hypotheses and conclusions in theorems. Consider two closely related
theorems:

Theorem. If an integer n is even, then n+ 1 is odd.

Theorem. If an integer n+ 1 is odd, then n is even.

The first theorem is “IfA, thenB.” (A⇒ B) and the second theorem is “IfB, then
A.” (B ⇒ A). Suppose we wanted to have a theorem that combined these theorems,
i.e. “If A then B, and if B then A”:

Theorem. If an integer n is even, then n+1 is odd, and if n+1 is odd, then n is even.
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This is legit, but a little hard to read. It turns out theorems of this form are very
common; so common that we have a special if-and-only-if form for them: “A if and
only if B”:

Theorem. An integer n is even if and only if n+ 1 is odd.

Just like if-then theorems were written as A ⇒ B, if-and-only-if theorems are
written as A ⇔ B, where A ⇔ B is defined as A ⇒ B and B ⇒ A. Sometimes the
English “if and only if” is shortened to “iff”, e.g. “an integer n is even iff n+1 is odd.
Compare A⇒ B to A⇔ B:

A B Possible if A⇒ B Possible if A⇔ B
True True Yes Yes
True False No No
False True Yes No
False False Yes Yes

So proving A ⇔ B says more than A ⇒ B, since it forbids the situation where A
is false and B is true.

3 Proofs
A convincing argument as to why a theorem is true is known as a proof. Theorems and
proofs usually come in pairs, with the theorem first and the proof following. Like so:

Theorem. If an integer n is even, then n+ 1 is odd.

Proof. Let n be an even integer. If n is even, then by the definition of even, 2 | n. If
2 | n, then by the definition of divisible, there exists an integer a such that n = 2a. So
n+ 1 = 2a+ 1 for some integer. So by the definition of odd, n+ 1 is odd.

Notice how each step of the proof follows from previous statements and definitions.
Here are the steps of the proof:

1. Let n be an even integer. (by hypothesis)

2. If n is even, then 2 | n. (by definition of even)

3. If 2 | n, then there exists an integer a such that n = 2a. (by definition of
divisible)

4. If n = 2a, then n+ 1 = 2a+ 1. (by algebra)

5. If n+ 1 = 2a+ 1, then n+ 1 is odd. (by definition of odd)

Each step of the proof is small step that follows easily from previous steps. This
gives a growing set of true statements, moving towards the statement of the theorem
we wish to prove. Proofs don’t need to follow this form, but many do, and one can
think of a proof of this form as a path through “truthland” from the hypothesis to the
conclusion. The proof acts as tour guide, making small steps to lead the tourist along
the path. Here’s another theorem-proof pair:
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Theorem. If an integer n is odd, then n− 1 is even.

Proof. Let n be an odd integer. If n is odd, then by the definition of odd, n = 2a + 1
for some integer a. So n − 1 = 2 · a for some integer a and so 2 | n − 1. So n − 1 is
even.

Now we can use this and the prior theorem in the proof of a new theorem:

Theorem. An integer n is even if and only if n+ 1 is odd.

Proof. Let n be an even integer. Then by the previous theorem, n + 1 is odd. So if n
is even, then n + 1 is odd. Now let n + 1 be an odd integer. By the previous theorem,
(n+ 1)− 1 = n is even. So if n+ 1 is odd, then n is even. So n is even if and only if
n+ 1 is odd.

Many times the path is not so clear. Consider this interesting theorem:

Theorem. The integer n2 − 1 is composite for any integer n ≥ 3.

This theorem isn’t in if-then form. What is the hypothesis and what is the conclu-
sion? Let’s start by identifying some statements. Let A = “n ≥ 3 is an integer” and
B = “n2 − 1 is composite”. Then we can restate the theorem as A⇒ B:

Theorem. If n ≥ 3 is an integer, then n2 − 1 is composite.

The first and last few steps of the proof follow from the definitions of the hypothesis
and conclusion:

1. Let n ≥ 3 be an integer.

2. So n2 − 1 is an integer.

3. . . .

4. . . . then n2 − 1 > 1.

5. . . . there exists an integer a with 1 < a < n2 − 1 and a | n2 − 1.

6. So n2 − 1 is composite.

When starting a proof, the first step is to fill in the first and last few steps of the proof
by “unravelling” the definitions in the hypothesis and conclusion. But what about the
in-between? Notice 32 − 1 = 2 · 4, 42 − 1 = 3 · 5, 52 − 1 = 4 · 6, etc. The pattern
n2− 1 = (n− 1) · (n+1) emerges. We can use n− 1 as the integer a needed to show
a2 − 1 is composite. This is enough to complete the missing middle of the proof:

Theorem. If n ≥ 3 is an integer, then n2 − 1 is composite.

Proof. Let n ≥ 3 be an integer. If n ≥ 3, then 2 ≤ n−1 < (n−1)·(n+1) = n2−1. If
2 ≤ n−1 < (n−1) ·(n+1) = n2−1, then n2−1 > 1. Moreover, 1 < n−1 < n2−1
and n − 1 | n2 − 1. So there exists an integer a = x − 1 with 1 < a < n2 − 1 and
a | n2 − 1. So n2 − 1 is composite.

In this case, trying a few examples of hypothesis and conclusion pairs was enough
to see the connection. In general, finding proofs can be very difficult; persistence and
the willingness to try new ideas is key.
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