TESTING FOR A DISEASE

TESTING FOR A DISEASE

- Suppose 1% of the population has a disease

TESTING FOR A DISEASE

- Suppose 1% of the population has a disease
- there is a diagnostic test, that finds it 80% of the time (assuming the subject has it)

TESTING FOR A DISEASE

- Suppose 1% of the population has a disease
- there is a diagnostic test, that finds it 80% of the time (assuming the subject has it)
- the test also produces false positives, at a rate of 9.6% (you're fine, but the test says you're not)

TESTING FOR A DISEASE

- Suppose 1% of the population has a disease
- there is a diagnostic test, that finds it 80% of the time (assuming the subject has it)
- the test also produces false positives, at a rate of 9.6% (you're fine, but the test says you're not)

If someone tests positive,
what are the odds that they have the disease?

4 events

	Have disease	Don't have disease
Test \because	80%	9.6%
Test \because	20%	90.4%

4 events

	1% Have disease	99% Don't have disease
Test \because	80%	9.6%
Test \because	20%	90.4%

4 events

	1% Have disease	99% Don't have disease
Test $\ddot{\sim}$	80%	9.6%
Test $\ddot{\because}$	20%	90.4%
$P($ diseaseltest $\ddot{\sim})=$?		

4 events

	1% Have disease	99% Don't have disease
Test $\ddot{\sim}$	80%	9.6%
Test $\ddot{\because}$	20%	90.4%
$P($ disease test $\ddot{\sim})=\frac{P(\text { disease } \cap \text { test } \ddot{\sim})}{P(\text { test } \ddot{\circ})}$		

4 events

	1% Have disease	99% Dort have disease
Test $\ddot{\sim}$	80%	9.6%
Test $\ddot{\because}$	20%	90.4%
$P($ disease \mid test $\ddot{\because})=\frac{P(\text { disease } \cap \text { test } \ddot{\ddot{\prime}})}{P(\text { test } \ddot{\circ})}=\frac{P(\text { test } \ddot{i} \mid \text { disease }) \cdot P(\text { disease })}{P(\text { test } \ddot{\sim})}$		

4 events

4 events

	1% Have disease	99% Don't have disease
Test $\ddot{\sim}$	80%	9.6%
Test $\ddot{\because}$	20%	90.4%
$P($ disease \mid test $\ddot{\sim})=\frac{P(\text { disease } \cap \text { test } \ddot{\ddot{ }})}{P(\text { test } \ddot{\circ})}=\frac{P(\text { test } \ddot{\because} \mid \text { disease }) \cdot P(\text { disease })}{P(\text { test } \ddot{\sim})}$		
$P($ test $\ddot{\sim} \mid$ disease $) \cdot P($ disease $)$	$=0.8 \cdot 0.01=0.008(0.8 \%)$	
$P($ test $\ddot{\sim})=?$		

4 events

	1% Have disease	99% Dort have disease
Test $\ddot{\sim}$	80%	9.6%
Test $\ddot{\sim}$	20%	90.4%
$P($ disease \mid test $\ddot{\sim})=\frac{P(\text { disease } \cap \text { test } \ddot{\sim})}{P(\text { test } \ddot{O})}=\frac{P(\text { test } \ddot{\because} \mid \text { disease }) \cdot P(\text { disease })}{P(\text { test } \ddot{\because})}$		
$P($ test $\ddot{\sim})=\left\{\begin{array}{l}P(\text { test } \ddot{\sim} \mid \text { disease }) \cdot P(\text { disease })=0.8 \cdot 0.01=0.008(0.8 \%) \\ ?\end{array}\right.$		

4 events

4 events

4 events

Test $\ddot{\sim}$

Bayes theorem

$$
\begin{aligned}
P(A \cap B) & =P(A \mid B) \cdot P(B) \\
& =P(B \mid A) \cdot P(A)
\end{aligned}
$$

$$
\begin{aligned}
& P(A \cap B)=P(A \mid B) \cdot P(B) \\
&=P(B \mid A) \cdot P(A) \\
& \& \quad P(A \mid B)=P(B \mid A) \cdot \frac{P(A)}{P(B)}
\end{aligned}
$$

Bayes theorem

$$
\begin{aligned}
P(A \cap B) & =P(A \mid B) \cdot P(B) \\
& =P(B \mid A) \cdot P(A)
\end{aligned}
$$

$$
\begin{aligned}
\therefore P(A \mid B) & =P(B \mid A) \cdot \frac{P(A)}{P(B)} \\
P(A \mid B) & =\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+P(B \mid \bar{A}) \cdot P(\bar{A})}
\end{aligned}
$$

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+P(B \mid \bar{A}) \cdot P(\bar{A})}
$$

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+P(B \mid \bar{A}) \cdot P(\bar{A})}
$$

A: have disease
B : test $\ddot{\sim}$

$\quad P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+P(B \mid \bar{A}) \cdot P(\bar{A})}$
A : have disease
B : test $\ddot{\sim}$

$$
\begin{aligned}
& P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+P(B \mid \bar{A}) \cdot P(\bar{A})} \\
& \left.\begin{array}{l|r|rl}
A: \text { have disease } \\
B: \text { test } \ddot{\sim}
\end{array} \quad \begin{array}{l}
1 \% A \\
B \mid A=80 \% \\
\hline
\end{array} \quad B \right\rvert\, \bar{A}=9.6 \% \quad \begin{array}{l}
P(A)=0.01 \\
P(\bar{A})=0.99 \\
P(B \mid A)=0.8 \\
P(B \mid \bar{A})=0.096
\end{array} \\
& P(A \mid B)=\frac{0.8 \cdot 0.01}{0.8 \cdot 0.01+0.096 \cdot 0.99}
\end{aligned}
$$

RANDOM VARIABLES

RANDOM VARIABLES

A quote from your textbook:
"A random variable is neither random nor variable"

We have been using random variables, implicitly. ex: roll 2 dice, examine probability that sum $=k$, or $=$ even.

We have been using random variables, implicitly.
ex: roll 2 dice, examine probability that sum $=k$, or $=$ even.
\rightarrow define random variable X : sum of two dice rolls.
So,

$$
\begin{aligned}
& x[(1,2)]=3 \\
& x[(5,5)]=10
\end{aligned}
$$

We have been using random variables, implicitly.
ex: roll 2 dice, examine probability that sum $=k$, or $=$ even.
\rightarrow define random variable X : sum of two dice rolls.
So,

$$
\begin{aligned}
& x[(1,2)]=3 \\
& x[(5,5)]=10
\end{aligned}
$$

define random variable Y : parity of two dice rolls.

We have been using random variables, implicitly.
ex: roll 2 dice, examine probability that sum $=k$, or $=$ even.
\rightarrow define random variable X : sum of two dice rolls.
So,

$$
\begin{aligned}
& x[(1,2)]=3 \\
& x[(5,5)]=10
\end{aligned}
$$

define random variable Y : parity of two dice rolls.

$$
\begin{array}{ll}
\text { So, } & y[(1,2)]=1 \\
& y[(5,5)]=0
\end{array}
$$

We have been using random variables, implicitly.
ex: roll 2 dice, examine probability that sum $=k$, or $=$ even.
\rightarrow define random variable X : sum of two dice rolls.
So,

$$
\begin{aligned}
& x[(1,2)]=3 \\
& x[(5,5)]=10
\end{aligned}
$$

define random variable Y : parity of two dice rolls.

$$
\text { So, } \begin{aligned}
& y[(1,2)]=1 \text { or } \\
&\left.\begin{array}{ll}
y & 13 \\
y[(5,5)]=0 & =-22
\end{array}\right\} \text { (arbitrary) }
\end{aligned}
$$

Think of a r.v. as a function, mapping sample space to $\underbrace{\text { whatever you like }}_{\text {usually a number }}$

Think of a r.v. as a function, mapping sample space to $\underbrace{\text { whatever you like }}_{\text {usually a number }}$

Then we can express questions neatly:

$$
\begin{array}{ll}
P(X<3)=\frac{1}{36} & \begin{array}{l}
2 \text { dice } \\
\leftarrow \text { sum }
\end{array} \\
P(Y=1)=\frac{1}{2} & \leftarrow \text { parity }
\end{array}
$$

Think of a r.v. as a function, mapping sample space to $\underbrace{\text { whatever you like }}_{\text {usually a number }}$

Then we can express questions neatly: $P(x<3)=\frac{1}{36} \underset{\sim}{2}$ sum

$$
P(Y=1)=\frac{1}{2} \leqslant \text { parity }
$$

We can also eliminate absurd events, e.g., $P(X=13)=0$

Think of a r.v. as a function, mapping sample space to $\underbrace{\text { whatever you like }}_{\text {usually a number }}$

Then we can express questions neatly: $P(x<3)=\frac{1}{36} \leftarrow$ sum

$$
P(Y=1)=\frac{1}{2} \leftarrow \text { parity }
$$

We can also eliminate absurd events, e.g., $P(x=13)=0$

Section 33 discusses in more detail: not required for our class

EXPECTATION: the very basics

EXPECTATION: the very basics
As mentioned, a riv. X can have several values. It is based on outcomes that result from a random process.

EXPECTATION: the very basics
As mentioned, a rev. X can have several values. It is based on outcomes that result from a random process. So we don't know what value it will have.

But we can expect it to have some value

EXPECTATION: the very basics
As mentioned, a riv. X can have several values.
It is based on outcomes that result from a random process.
So we don't know what value it will have.
But we can expect it to have some value
Expected value $=$ weighted average
(e.g. average parity for unfair coin $=\frac{1}{2}$; weighted average $\neq \frac{1}{2}$)

Expected value $=$ weighted average

$$
E(X)=\sum_{*} y \cdot P(X=y)
$$

$\xrightarrow{*}$ * over all possible values y, compatible with X.

Expected value $=$ weighted average

$$
E(X)=\sum_{*} y \cdot P(X=y)
$$

\longrightarrow * over all possible values y, compatible with X. (however we only care about finitely many)

Expected value $=$ weighted average

$$
E(X)=\sum_{*} y \cdot P(X=y)
$$

$\xrightarrow{*}$ * over all possible values y, compatible with X.
(however we only care about finitely many)

$$
E(X)=\underbrace{\sum_{s \in S}}_{v}[X(s) \cdot P(s)]
$$

$\left.\begin{array}{l}\text { over all samples } \\ \text { that define X. }\end{array}\right\} \begin{aligned} & \text { a finite } \\ & \text { number }\end{aligned}$

Expected value $=$ weighted average

$$
E(X)=\sum_{*} y \cdot P(X=y)
$$

$\xrightarrow{*}$ * over all possible values y, compatible with X.
(however we only care about finitely many)
$\left.E(X)=\sum_{v} \sum_{v \in S}[X(s) \cdot P(s)]\right\}$ e.g. roll 1 die. $X=$ number observed.
$\left.\begin{array}{l}\text { over all samples } \\ \text { that define X. }\end{array}\right\} \begin{aligned} & \text { a finite } \\ & \text { number }\end{aligned}$

Expected value $=$ weighted average

$$
E(X)=\sum_{*} y \cdot P(X=y)
$$

${ }^{*}$ * over all possible values y, compatible with X.
(however we only care about finitely many)

$$
E(X)=\sum_{s \in S}[X(s) \cdot P(s)]\left\{\begin{array}{cl}
\text { e.g. } & \text { roll } 1 \text { die. } X=\text { number observed. } \\
E(X)=\sum_{i=1}^{6} X(i) \cdot P(i)
\end{array}\right.
$$

over all samples
that define $X.\} \begin{aligned} & \text { a finite } \\ & \text { number }\end{aligned}$

Expected value $=$ weighted average

$$
E(X)=\sum_{*} y \cdot P(X=y)
$$

$\xrightarrow{*}$ * over all possible values y, compatible with X.
(however we only care about finitely many)

$$
\left.\begin{array}{rl}
E(X)=\sum_{s \in S}[X(s) \cdot P(s)]
\end{array}\right\} \begin{array}{ll}
\text { e.g. roll } 1 \text { die. } X=\text { number observed. } \\
E(X)=\sum_{i=1}^{6} X(i) \cdot P(i)
\end{array} \quad \begin{aligned}
& \text { over all samples } \\
& =1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}
\end{aligned}
$$

Expected value $=$ weighted average

$$
E(X)=\sum_{*} y \cdot P(X=y)
$$

all possible values y, compatible with X.
(however we only care about finitely many)

$$
\left.\begin{array}{rl}
E(X)=\sum_{s \in S}[X(s) \cdot P(s)]
\end{array}\right\} \begin{aligned}
\text { e.g. } & \text { roll } 1 \text { die. } X=\text { number observed. } \\
E(X) & =\sum_{i=1}^{6} X(i) \cdot P(i)
\end{aligned} \quad \begin{aligned}
&=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6} \\
&\left.\begin{array}{rl}
\text { over all samples } \\
\text { that define } X
\end{array}\right\} \text { a finite }
\end{aligned} \quad \begin{aligned}
& \text { number }
\end{aligned} \quad=\frac{1}{6} \cdot(1+2+3+4+5+6)=3.5 .
$$

Expected value $=$ weighted average
$\left.E(X)=\sum_{*} y \cdot P(X=y)\right\}$ see example 34.3 in book (mainly p. 237)
$\xrightarrow{*}$ * over all possible values y, compatible with X.
(however we only care about finitely many)

$$
\left.\begin{array}{rl}
E(X)=\sum_{s \in S}[X(s) \cdot P(s)]
\end{array}\right\} \begin{aligned}
\text { e.g. } & \text { roll } 1 \text { die. } X=\text { number observed. } \\
E(X) & =\sum_{i=1}^{6} X(i) \cdot P(i)
\end{aligned} \quad \begin{aligned}
&=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6} \\
&\left.\begin{array}{rl}
\text { over all samples } \\
\text { that define } X
\end{array}\right\} \text { a finite }
\end{aligned} \quad \begin{aligned}
& \text { number }
\end{aligned} \quad=\frac{1}{6} \cdot(1+2+3+4+5+6)=3.5 .
$$

$E(X)=\sum y \cdot P(X=y) \quad \left\lvert\, \begin{aligned} & \text { typically use this when you have a } \\ & \text { good way of aggregating outcomes }\end{aligned}\right.$
$E(X)=\sum y \cdot P(X=y) \quad \left\lvert\, \begin{aligned} & \text { typically use this when you have a } \\ & \text { good way of aggregating outcomes }\end{aligned}\right.$
example: roll 2 dice. $X=\mid$ difference between the $2 \mid$
$E(X)=\sum y \cdot P(X=y) \quad \left\lvert\, \begin{aligned} & \text { typically use this when you have a } \\ & \text { good way of aggregating outcomes }\end{aligned}\right.$
example: roll 2 dice. $X=\mid$ difference between the $2 \mid$
possible values of $X \rightarrow 0 \rightarrow 1 \begin{array}{lllll} & \rightarrow & 2 & 3 & 4\end{array}$
$E(X)=\sum y \cdot P(X=y) \quad$ typically use this when you have a good way of aggregating outcomes
example: roll 2 dice. $X=\mid$ difference between the $2 \mid$

\# outcomes supporting value $\rightarrow 6$?
$E(X)=\sum y \cdot P(X=y) \quad$ typically use this when you have a good way of aggregating outcomes
example: roll 2 dice. $X=\mid$ difference between the $2 \mid$
possible values of $X \rightarrow 0 \begin{array}{llllll} & \rightarrow & 2 & 3 & 4 & 5\end{array}$
\# outcomes supporting value $\rightarrow \quad 6 \quad 5.2$?
$E(X)=\sum y \cdot P(X=y) \quad$ typically use this when you have a good way of aggregating outcomes
example: roll 2 dice. $X=\mid$ difference between the $2 \mid$
possible values of $X \rightarrow 0 \rightarrow 1 \begin{array}{llllll} & \rightarrow & 2 & 3 & 4 & 5\end{array}$
\# outcomes supporting value $\rightarrow \quad \begin{array}{llll}6 & 5.2 & 4.2\end{array}$?
$E(X)=\sum y \cdot P(X=y) \quad$ typically use this when you have a good way of aggregating outcomes
example: roll 2 dice. $X=\mid$ difference between the $2 \mid$
possible values of $X \rightarrow 0 \begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllllll}\# \text { \# outcomes supporting value } \rightarrow & 6 & 5.2 & 4.2 & 3.2 & 2.2 & 1.2\end{array}$
$E(X)=\sum y \cdot P(X=y) \quad \left\lvert\, \begin{aligned} & \text { typically use this when you have a } \\ & \text { good way of aggregating outcomes }\end{aligned}\right.$
example: roll 2 dice. $X=\mid$ difference between the $2 \mid$
possible values of $X \rightarrow 0 \begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
\# outcomes supporting value $\rightarrow \begin{array}{llllll}6 & 5.2 & 4.2 & 3.2 & 2.2 & 1.2\end{array}$ (for probability, divide by 36)
$E(X)=\sum y \cdot P(X=y) \quad \left\lvert\, \begin{aligned} & \text { typically use this when you have a } \\ & \text { good way of aggregating outcomes }\end{aligned}\right.$ good way of aggregating outcomes
example: roll 2 dice. $X=\mid$ difference between the $2 \mid$
possible values of $X \rightarrow 0 \begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
\# outcomes supporting value $\rightarrow \begin{array}{llllll}6 & 5.2 & 4.2 & 3.2 & 2.2 & 1.2\end{array}$ (for probability, divide by 36)

$$
E(x)=?
$$

$E(X)=\sum y \cdot P(X=y) \quad \left\lvert\, \begin{aligned} & \text { typically use this when you have a } \\ & \text { good way of aggregating outcomes }\end{aligned}\right.$ good way of aggregating outcomes
example: roll 2 dice. $X=\mid$ difference between the $2 \mid$
possible values of $X \rightarrow 0 \begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
\# outcomes supporting value $\rightarrow \begin{array}{llllll}6 & 5.2 & 4.2 & 3.2 & 2.2 & 1.2\end{array}$
(for probability, divide by 36)

$$
E(x)=\frac{0+10+16+18+16+10}{36}(\sim 1.944)
$$

EXPECTATION: PROPERTIES

EXPECTATION : PROPERTIES

$$
E(X+Y)=E(X)+E(Y)
$$

EXPECTATION : PROPERTIES

$$
c_{1}, c_{2} \in \mathbb{R} \quad E\left(c_{1} X+c_{2} Y\right)=c_{1} \cdot E(X)+c_{2} \cdot E(Y)
$$

EXPECTATION : PROPERTIES
LINEARITY OF EXPECTATION (important)

$$
\Leftrightarrow c_{1}, c_{2} \in \mathbb{R} \quad E\left(c_{1} X+c_{2} Y\right)=c_{1} \cdot E(X)+c_{2} \cdot E(Y)
$$

EXPECTATION : PROPERTIES
LINEARITY OF EXPECTATION (important)

$$
\Leftrightarrow c_{1}, c_{2} \in \mathbb{R} \quad E\left(c_{1} X+c_{2} Y\right)=c_{1} \cdot E(X)+c_{2} \cdot E(Y)
$$

Generally, $E\left(c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n}\right)=c_{1} E\left(X_{1}\right)+c_{2} E\left(X_{2}\right)+\cdots c_{n} E\left(X_{n}\right)$

EXPECTATION : PROPERTIES
LINEARITY OF EXPECTATION (important)

$$
\Leftrightarrow c_{1}, c_{2} \in \mathbb{R} \quad E\left(c_{1} X+c_{2} Y\right)=c_{1} \cdot E(X)+c_{2} \cdot E(Y)
$$

Generally, $E\left(c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n}\right)=c_{1} E\left(X_{1}\right)+c_{2} E\left(X_{2}\right)+\cdots c_{n} E\left(X_{n}\right)$
$E\left(\sum c_{i} X_{i}\right)=\sum c_{i} E\left(X_{i}\right) \rightarrow$ Does NoT assume independence

EXPECTATION : PROPERTIES
LINEARITY OF EXPECTATION (important)

$$
\Leftrightarrow c_{1}, c_{2} \in \mathbb{R} \quad E\left(c_{1} X+c_{2} Y\right)=c_{1} \cdot E(X)+c_{2} \cdot E(Y)
$$

Generally, $E\left(c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n}\right)=c_{1} E\left(X_{1}\right)+c_{2} E\left(X_{2}\right)+\cdots c_{n} E\left(X_{n}\right)$
$E\left(\sum c_{i} X_{i}\right)=\sum c_{i} E\left(X_{i}\right) \rightarrow$ Does NOT assume independence Independence: $P(X=a \& Y=b)=P(X=a) \cdot P(Y=b)$ for all $a, b \ldots$

EXPECTATION: PROPERTIES
LINEARITY OF EXPECTATION (important)

$$
\Leftrightarrow c_{1}, c_{2} \in \mathbb{R} \quad E\left(c_{1} X+c_{2} Y\right)=c_{1} \cdot E(X)+c_{2} \cdot E(Y)
$$

Generally, $E\left(c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n}\right)=c_{1} E\left(X_{1}\right)+c_{2} E\left(X_{2}\right)+\cdots c_{n} E\left(X_{n}\right)$
$E\left(\sum c_{i} X_{i}\right)=\sum c_{i} E\left(X_{i}\right) \rightarrow$ Does NOT assume independence
Independence: $P(X=a \& Y=b)=P(X=a) \cdot P(Y=b)$ for all $a, b \ldots$
2 dice, $A, B . \quad X=$ result of $A . \quad Y=$ result of $B . \quad Z=X+Y$

$$
E(Z)=E(X+Y)=E(X)+E(Y)=2 \cdot 3.5=7
$$

EXPECTATION : PROPERTIES

$$
E(x+y)=E(x)+E(y)
$$

Linearity of expectation doesn't assume independence

EXPECTATION: PROPERTIES

$$
E(x+y)=E(x)+E(y)
$$

Linearity of expectation doesnit assume independence
but $E(X \cdot Y) \neq E(X) \cdot E(Y)$ in general.

EXPECTATION: PROPERTIES

$$
E(x+y)=E(x)+E(y)
$$

Linearity of expectation doesnit assume independence
but $E(X \cdot Y) \neq E(X) \cdot E(Y)$ in general.
If $X \& Y$ are independent, then $E(X \cdot Y)=E(X) \cdot E(Y)$

EXPECTATION : PROPERTIES

$$
E(X+Y)=E(X)+E(Y)
$$

Linearity of expectation doesn't assume independence
but $E(X \cdot Y) \neq E(X) \cdot E(Y)$ in general.
If $X \& Y$ are independent, then $E(X \cdot Y)=E(X) \cdot E(Y)$
However, $E(X \cdot Y)=E(X) \cdot E(Y)$ does NOT imply $X \& Y$ are independent.
(see example 34.15)

- We are skipping the proofs of most statements in this section.
- You are not required to study these, but it would probably be beneficial.
- We are also skipping variance, which is an important concept to learn independently.

INDICATOR RANDOM VARIABLES (taking value 0 or 1)

INDICATOR RANDOM VARIABLES (taking value 0 or 1)
We already saw this: Y : parity of rolling one die.

INDICATOR RANDOM VARIABLES (taking value 0 or 1)
We already saw this: Y : parity of rolling one die.
Another example: flip a coin 10 times. $X=$ \#times we see pattern HT

INDICATOR RANDOM VARIABLES
(taking value 0 or 1)
We already saw this: Y : parity of rolling one die.
Another example: flip a coin 10 times.
$X=$ \#times we see pattern HT

$$
E(x)=?
$$

Try solving this "directly"

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ \#times we see pattern HT

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ \#times we see pattern HT
HT could appear at f lips $1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ \#times we see pattern HT
HT could appear at f lips $1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$
Define r.r. $X_{i}=$?

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ \#times we see pattern HT
HT could appear at $\mathrm{flips} 1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$
Define r.r. $X_{i}= \begin{cases}1 & \text { if flips } i \\ 0 & \text { otherwise }\end{cases}$

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ \#times we see pattern HT
HT could appear at $\mathrm{flips} 1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$
Define r.r. $X_{i}= \begin{cases}1 & \text { if flips } i \\ 0 & \text { otherwise }\end{cases}$

$$
x=x_{1}+x_{2}+\cdots+x_{9}
$$

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ \#times we see pattern HT
HT could appear at $\mathrm{flips} 1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$
Define r.r. $X_{i}= \begin{cases}1 & \text { if flips } i \\ 0 & \text { otherwise }\end{cases}$

$$
x=x_{1}+x_{2}+\cdots+x_{9}
$$

Notice X_{1} \& X_{2} are not independent. $P\left(X_{i}=1\right)=\frac{1}{4}$

$$
P\left(X_{1} \wedge X_{2}\right)=0
$$

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ times we see pattern HT
HT could appear at $\mathrm{flips} 1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$
Define r.r. $X_{i}= \begin{cases}1 & \text { if flips } i \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
x & =X_{1}+X_{2}+\cdots+X_{9} \\
E(x) & =E\left(X_{1}+X_{2}+\cdots+X_{9}\right)
\end{aligned}
$$

Notice X_{1} \& X_{2} are not independent. $P\left(X_{i}=1\right)=\frac{1}{4}$

$$
P\left(X_{1} \wedge x_{2}\right)=0
$$

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ times we see pattern HT
HT could appear at $\mathrm{flips} 1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$
Define r.r. $X_{i}= \begin{cases}1 & \text { if flips } i \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
X & =X_{1}+X_{2}+\cdots+X_{q} \\
E(X) & =E\left(X_{1}+X_{2}+\cdots+X_{q}\right)
\end{aligned}
$$

Notice X_{1} \& X_{2} are not independent. $P\left(X_{i}=1\right)=\frac{1}{4}$

$$
P\left(X_{1} \wedge X_{2}\right)=0
$$

linearity of expectation

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ times we see pattern HT
HT could appear at $\mathrm{flips} 1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$
Define r.r. $X_{i}= \begin{cases}1 & \text { if flips } i \& i+1 \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
X & =X_{1}+X_{2}+\cdots+X_{9} \\
E(X) & =E\left(X_{1}+X_{2}+\cdots+X_{q}\right) \\
& =E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots E\left(X_{9}\right)
\end{aligned}
$$

Notice X_{1} \& X_{2} are not independent. $P\left(X_{i}=1\right)=\frac{1}{4}$

$$
P\left(X_{1} \wedge x_{2}\right)=0
$$

linearity of expectation

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ times we see pattern HT
HT could appear at $\mathrm{flips} 1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$
Define r.r. $X_{i}= \begin{cases}1 & \text { if flips } i \& i+1 \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& X=X_{1}+X_{2}+\cdots+X_{9} \\
& E(X)=E\left(X_{1}+X_{2}+\cdots+X_{q}\right) \\
&=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots E\left(X_{9}\right) \\
& E\left(X_{i}\right)=?
\end{aligned}
$$

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ times we see pattern HT
HT could appear at $\mathrm{flips} 1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$
Define r.r. $X_{i}= \begin{cases}1 & \text { if flips } i \& i+1 \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{array}{rlr}
X & =X_{1}+X_{2}+\cdots+X_{q} \quad \begin{array}{r}
\text { Notice } X_{1} \& X_{2} \text { are } \\
\text { not independent. } P\left(X_{i}=1\right)=\frac{1}{4} \\
P(X)
\end{array}=E\left(X_{1}+X_{2}+\cdots+X_{q}\right) \quad \text { linearity of expectation } \\
& =E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots E\left(X_{g}\right)< \\
E\left(X_{i}\right)=0 \cdot P\left(X_{i}=0\right)+1 \cdot P\left(X_{i}=1\right)
\end{array}
$$

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ times we see pattern HT
HT could appear at $\mathrm{flips} 1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$
Define r.r. $X_{i}= \begin{cases}1 & \text { if flips } i \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& X=X_{1}+X_{2}+\cdots+X_{9} \quad \begin{array}{l}
\text { Notice } X_{1} \& X_{2} \text { are } \\
\text { not independent. } P\left(X_{i}=1\right)=\frac{1}{4} \\
E(X)
\end{array} \\
&=E\left(X_{1}+X_{2}+\cdots+X_{q}\right) \quad \text { linearity of expectation } \\
& E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots E\left(X_{9}\right)<0 \\
& E\left(X_{i}\right)=0 \cdot P\left(X_{i}=0\right)+1 \cdot P\left(X_{i}=1\right)
\end{aligned}
$$

INDICATOR RANDOM VARIABLES
flip a coin 10 times. $\quad X=$ times we see pattern HT
HT could appear at $\mathrm{flips} 1 \& 2$, or $2 \& 3, \ldots$, or $9 \& 10$
Define r.r. $X_{i}= \begin{cases}1 & \text { if flips } i \& i+1 \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{array}{rlr}
X & =X_{1}+X_{2}+\cdots+X_{9} \quad \begin{array}{r}
\text { Notice } X_{1} \& X_{2} \text { are } \\
\text { not independent. } P\left(X_{i}=1\right)=\frac{1}{4} \\
E(X)
\end{array} & =E\left(X_{1}+X_{2}+\cdots+X_{q}\right) \quad \text { linearity of expectation } \\
& =E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots E\left(X_{9}\right) \\
& =9 \cdot \frac{1}{4} &
\end{array}
$$

