A bet : I randomly select half of the class...

A bet: I randomly select half of the class...

If any 2 people in that group have the same birthday you give me a dollar.

A bet: I randomly select half of the class...

If any 2 people in that group have the same birthday you give me a dollar.

If no birthday match is found I give you a dollar

Another bet:
I randomly select 10 people born in the same month Same deal as before

Another bet :
I randomly select 10 people born in the same month Same deal as before

My chances of winning: $>80 \%$

One last bet?

I randomly select 7 people
If any 2 people in that group have birthdays within a week of each other...

One last bet?

I randomly select 7 people
If any 2 people in that group have birthdays within a week of each other...

I win 60% of the time. (52% if within 6 days)

DISCRETE PROBABILITY

DISCRETE PROBABILITY

Roll a die ... Possible outcomes: $\{1,2,3,4,5,6\}$

DISCRETE PROBABILITY

Roll a die ... Possible outcomes: $\{1,2,3,4,5,6\}$
 Leach has a probability: $\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}$

DISCRETE PROBABILITY
sample space
Roll a die ... Possible outcomes: $\{1,2,3,4,5,6\}$

Leach has a probability: $\underbrace{\left\{\frac{\{1 / 6}{1}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}}_{\text {sum to } 1}$

DISCRETE PROBABILITY
sample space
Roll a die ... Possible outcomes: $\{1,2,3,4,5,6\}$
 Leach has a probability: $\underbrace{\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}}_{\text {sum to } 1}$

Roll 2 dice ... sample space \rightarrow ?

DISCRETE PROBABILITY

Roll 2 indistinguishable dice...

$$
\begin{aligned}
& \because \because 0 \\
& \text { sample space } \rightarrow\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6) \text {, } \\
& (2,2),(2,3),(2,4),(2,5),(2,6), \\
& (3,3),(3,4),(3,5),(3,6), \\
& (4,4),(4,5),(4,6) \text {, } \\
& (5,5),(5,6) \text {, } \\
& (6,6)\}
\end{aligned}
$$

Roll 2 indistinguishable dice...

Roll 2 indistinguishable dice...

$$
\text { prob. } \neq \frac{1}{36}
$$

$$
\begin{array}{r}
\text { sample space } \rightarrow \begin{array}{r}
\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), \\
(2,2),(2,3),(2,4),(2,5),(2,6), \\
(3,3),(3,4),(3,5),(3,6), \\
(4,4),(4,5),(4,6), \\
(5,5),(5,6), \\
\hline \frac{1}{36}
\end{array} \\
(6,6)\}
\end{array}
$$

if (a, b) then $\frac{2}{36}$ $a \neq b$

Roll 2 indistinguishable dice...

$$
\text { prob. } \neq \frac{1}{36}
$$

$$
\begin{array}{r}
\text { sample space } \rightarrow \begin{array}{r}
\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), \\
(2,2),(2,3),(2,4),(2,5),(2,6), \\
(3,3),(3,4),(3,5),(3,6), \\
(4,4),(4,5),(4,6), \\
(5,5),(5,6), \\
\hline 1
\end{array} \\
\begin{array}{r}
16,6)\}
\end{array}
\end{array}
$$

if (a, b) then $\frac{2}{36} \quad\left(15 \cdot \frac{2}{36}=\frac{30}{36}\right)$

Roll a die $\left\lvert\, P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=\frac{1}{6}\right.$

Roll a die $\left\lvert\, P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=\frac{1}{6}\right.$

$$
\because \quad P(\underbrace{\text { roll even }}_{\text {event }})=P(\{2,4,6\})=P(2)+P(4)+P(6)=\frac{1}{2}
$$

Roll a die $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=\frac{1}{6}$

$$
\because P(\underbrace{\text { roll even }}_{\text {event }})=P(\{2,4,6\})=P(2)+P(4)+P(6)=\frac{1}{2}
$$

Roll 2 dice... $P($ sum $=7)$...

Roll a die $\left\lvert\, P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=\frac{1}{6}\right.$

$$
\because P(\underbrace{\text { roll even }}_{\text {event }})=P(\{2,4,6\})=P(2)+P(4)+P(6)=\frac{1}{2}
$$

Roll 2 dice... $P($ sum $=7)=P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\})$

Roll a die $\left\lvert\, P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=\frac{1}{6}\right.$

$$
P(\underbrace{\text { roll even }}_{\text {event }})=P(\{2,4,6\})=P(2)+P(4)+P(6)=\frac{1}{2}
$$

Roll 2 dice... $P($ sum $=7)=P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\})$

$$
a \quad b=P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1)
$$

Roll a die $\left\lvert\, P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=\frac{1}{6}\right.$

$$
P(\underbrace{\text { roll even }}_{\text {event }})=P(\{2,4,6\})=P(2)+P(4)+P(6)=\frac{1}{2}
$$

Roll 2 dice... $P($ sum $=7)=P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\})$

$$
\begin{aligned}
& =P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1) \\
& =6 \cdot \frac{1}{36}=\frac{1}{6}
\end{aligned}
$$

Roll a die $\left\lvert\, P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=\frac{1}{6}\right.$

$$
P(\underbrace{\text { roll even }})=P(\{2,4,6\})=P(2)+P(4)+P(6)=\frac{1}{2}
$$

event
Roll 2 dice... $P($ sum $=7)=P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\})$

$$
\begin{aligned}
& =P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1) \\
& =6 \cdot \frac{1}{36}=\frac{1}{6}
\end{aligned}
$$

$$
P(\text { sum }=7)=?
$$

Roll a die $\left\lvert\, P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=\frac{1}{6}\right.$

$$
P(\underbrace{\text { roll even }})=P(\{2,4,6\})=P(2)+P(4)+P(6)=\frac{1}{2}
$$

event
Roll 2 dice... $P($ sum $=7)=P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\})$

$$
\begin{aligned}
& =P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1) \\
& =6 \cdot \frac{1}{36}=\frac{1}{6}
\end{aligned}
$$

$$
P(\text { sum }=7)=P(\{(1,6),(2,5),(3,4)\})
$$

Roll a die $\left\lvert\, P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=\frac{1}{6}\right.$

$$
P(\underbrace{\text { roll even }})=P(\{2,4,6\})=P(2)+P(4)+P(6)=\frac{1}{2}
$$

event
Roll 2 dice... $P($ sum $=7)=P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\})$

$$
\begin{aligned}
& =P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1) \\
& =6 \cdot \frac{1}{36}=\frac{1}{6}
\end{aligned}
$$

$$
P(\text { sum }=7)=P(\{(1,6),(2,5),(3,4)\})=3 \cdot \frac{2}{36}=\frac{1}{6}
$$

Roll 10 dice (or 1 die 10 times)

Roll 10 dice (or 1 die 10 times)
Sample space size:?

Roll 10 dice (or 1 die 10 times)
Sample space size: $6^{10}>60$ million

Roll 10 dice (or 1 die 10 times)
Sample space size: $6^{10}>60$ million
P (observe no 1's) ?

Roll 10 dice (or 1 die 10 times)
Sample space size: $6^{10}>60$ million
P (observe no 1's) ?
How many outcomes have no 1's?

Roll 10 dice (or 1 die 10 times)

How many outcomes have no 1^{\prime} s? \rightarrow^{10}

Roll 10 dice (or 1 die 10 times)

$$
\begin{array}{ll}
\text { Sample space size: } & 6^{10}>60 \text { million } \\
\text { P(observe no 1's) ? } & \downarrow\left(\frac{5}{6}\right)^{10}
\end{array}
$$

How many outcomes have no 1^{\prime} s? $\rightarrow 5^{10}$

Roll 10 dice (or 1 die 10 times)

$$
\begin{array}{ll}
\text { Sample space size: } & 6^{10}>60 \text { million } \\
\text { P(observe no 1's) } ? & \downarrow\left(\frac{5}{6}\right)^{10}
\end{array}
$$

How many outcomes have no 1 's? $\rightarrow 5^{10}$
Gor, say that each roll/die is independent say that each roll/die is independent
so for each roll, $P\left(\begin{array}{ll}n_{0} & 1)=\frac{5}{6} \Rightarrow\left(\frac{5}{6}\right)^{10}\end{array}\right\} \begin{aligned} & \text { to be } \\ & \text { discussed } \\ & \text { further }\end{aligned}$

Poker: 52 cards (4×13 types); select 5 .

Poker: 52 cards (4×13 types); select 5 .

$$
\begin{aligned}
& P(4 \text { of a kind })=P(4 \text { of } 5 \text { are of same type }) \\
& \text { e.g. } 3,3,3,3,7 \text { or } 8,8,8,5,8 \\
&=\text { ? }
\end{aligned}
$$

Poker: 52 cards (4×13 types); select 5 .
$P(4$ of a kind $)=P(4$ of 5 are of same type $)$
e.g. $3,3,3,3,7$ or $8,8,8,5,8$
ans: $\frac{\text { \#4-of-a-kinds }}{\text { \#possible outcomes }}$

Poker: 52 cards (4×13 types); select 5 .

$$
\begin{gathered}
P(4 \text { of a kind })=P(4 \text { of } 5 \text { are of same type }) \\
\text { e.g. } 3,3,3,3,7 \text { or } 8,8,8,5,8
\end{gathered}
$$

ans: $\frac{\text { \#4-of-a-kinds }}{\text { \#possible outcomes }} \rightarrow$? (order doesn't matter)

Poker: 52 cards (4×13 types); select 5 .

$$
\begin{gathered}
P(4 \text { of a kind })=P(4 \text { of } 5 \text { are of same type }) \\
\text { e.g. } 3,3,3,3,7 \text { or } 8,8,8,5,8
\end{gathered}
$$

ans: $\frac{\text { \# 4-of-a-kinds }}{\text { \#possible outcomes }} \longrightarrow\binom{52}{5}$ \}order doesn't matter what if it did? \rightarrow how

Poker: 52 cards (4×13 types); select 5 .

$$
\begin{gathered}
P(4 \text { of a kind })=P(4 \text { of } 5 \text { are of same type }) \\
\text { e.g. } 3,3,3,3,7 \text { or } 8,8,8,5,8
\end{gathered}
$$

ans: \#4-of-a-kinds \longrightarrow ?
\#possible outcomes $\left.\longrightarrow\binom{52}{5}\right\}$ order doesn't matter

Poker: 52 cards (4×13 types); select 5 .

$$
P(4 \text { of a kind })=P(4 \text { of } 5 \text { are of same type })
$$

\qquad
e.g. $3,3,3,3,7$ or $8,8,8,5,8$
 \#possible outcomes $\left.\rightarrow\binom{52}{5}\right\}$ order doesn't matter

Poker: 52 cards (4×13 types); select 5 .

$$
P(4 \text { of a kind })=P(4 \text { of } 5 \text { are of same type })
$$

$$
\text { e.g. } 3,3,3,3,7 \text { or } 8,8,8,5,8
$$

ans: \#4-of-a-kinds $\left.\longrightarrow \begin{array}{c}\text { ARA } \\ 222 \\ \text { KKK } \\ 2\end{array}\right\} 13$ types $\times 48$ choices of $\begin{gathered}\text { remaining card }\end{gathered}$ \#possible outcomes $\left.\rightarrow\binom{52}{5}\right\}$ order doesn't matter

$$
\rightarrow \frac{13.48}{\binom{52}{5}}=\frac{1}{4165} \sim 0.00024
$$

Probability visualization

Probability visualization

Probability visualization

Probability visualization

$P($ event $)=$ sum of appropriate areas
e.g. $P(\underbrace{\text { roll prime \# or }} \underbrace{\text { even\# \# }})$

Probability visualization

$P($ event $)=$ sum of appropriate areas
e.g. $P(\underbrace{\text { roll prime\# }}_{2,3,5}$ or $\underbrace{\text { even\# }}_{2,4,6})$
$P($ prime $)=? \quad P($ even $)=$?

Probability visualization

$$
\left.\begin{array}{rl}
P(\text { event }) & =\text { sum of appropriate areas } \\
\text { e.g. } & \begin{array}{ll}
P(\underbrace{\text { roll prime\# } \#, 5}_{P(\text { prime })=\frac{3}{6}}
\end{array} \text { or } \underbrace{\text { even } \#)}_{\substack{2,4,6}}
\end{array}\right\} \text { ? }
$$

Probability visualization

$$
\begin{aligned}
& P(\text { event })=\text { sum of appropriate areas } \\
& \text { ecg. } P(\underbrace{(\underbrace{\text { roll prime\# }}_{2,3,5}}_{P(\text { prime })=\frac{3}{6}} \text { or } \underbrace{\text { even \# } \#}_{P(\text { even })=\frac{3}{6}})\} \frac{5}{6} \\
& \text { avoid } \\
& \text { doublecounting } \\
& \text { NOT } \frac{3}{6}+\frac{3}{6}
\end{aligned}
$$

$P(A) \quad P(B)^{V S} P(A \cup B) \quad P(A \cap B)$

P (someone in class was born on Feb. 29)
P (someone in class was born on Feb. 29)

$$
=P[(\text { student } 1 \text { born on Feb. 29) U (student } 2 \text { born on Feb. 29)... }
$$

\ldots... (student 3 born on Feb. 29) ... U... (student k born on Feb. 29)]
P (someone in class was born on Feb. 29)

$$
=P[(\text { student } 1 \text { born on Feb. 29) U (student } 2 \text { born on Feb. 29)... }
$$

$P($ someone in class was born on Feb. 29)

$$
=P[(\text { student } 1 \text { born on Feb. 29) U (student } 2 \text { born on Feb. 29)... }
$$

... U (student 3 born on Feb. 29) ... U... $\quad \underbrace{\text { student } k \text { born on Feb. 29) }}_{\sim \frac{1}{365.4+1} \sim 0.07 \%}$]
C awful
$P($ someone in class was born on Feb. 29)
$=P[($ student 1 born on Feb. 29) U (student 2 born on Feb. 29)...
$\begin{array}{ll}\ldots & \text {... } \text { student } 3 \text { born on Feb. 29) ... U... } \\ C \text { awful but we could say it is }<\sum P(i) & \underbrace{s t u d e n t ~}_{\sim \frac{1}{365.4+1} \sim 0.07 \%} k \text { born on feb. 29) }\end{array}$
$P($ someone in class was born on Feb. 29)
$=P[($ student 1 born on Feb. 29) U (student 2 born on Feb. 29)... ~ 5.6%
$P($ someone in class was born on Feb. 29)
$=P[($ student 1 born on Feb. 29) U (student 2 born on Feb. 29)...

$$
\text { ~ } 5.6 \%
$$

$=1-P($ nobody in class was born on Feb. 29)
$P($ someone in class was born on Feb. 29)
$=P[($ student 1 born on Feb. 29) U (student 2 born on Feb. 29)...
\ldots (student 3 born on Feb. 29) ... U... $\quad(\underbrace{\text { student } k \text { born on Feb. 29 }}$)]
C awful but we could say it is $\left\langle\sum P(i) \sim 80.0 .07 \% \sim \frac{1}{365.4+1} \sim 0.07 \%\right.$
$=1-P($ nobody in class was born on Feb. 29)
$=1$ - $P[($ student 1 NOT born on Feb. 29) \cap (student 2 NOT born on Feb. 29) $\ldots \cap$ (student k NOT born on Feb. 29)]
$P($ someone in class was born on Feb. 29)
$=P[($ student 1 born on Feb. 29) U (student 2 born on Feb. 29)...

$=1-P($ nobody in class was born on Feb. 29)
$=1$ - P $0[$ student 1 NOT born on Feb. 29) \cap (student 2 NOT born on Feb. 29) $\ldots \cap$ (student k NOT born on Feb. 29)]

$$
=1-\alpha^{k} \quad \alpha=P(\text { student i NOT born on Feb. 29) }
$$

$P($ someone in class was born on Feb. 29) (suppose $k=80$ students) $=P[($ student 1 born on Feb. 29) U (student 2 born on Feb. 29)...
... U (student 3 born on Feb. 29) ... U... (student k born on Feb. 29)]
\rightarrow awful but we could say it is $<\sum_{\text {(approximation) }}^{\rightarrow} P(i) \underset{\sim 5.6 \%}{\sim 80.0 .07 \%} \sim \underbrace{\frac{1}{365 \cdot 4+1}}_{\square \text { assuming all }} \sim 0.07 \%$
$=1-P($ nobody in class was born on Feb.29) days equally likely \& 1 leap year every 4.
$=1$ - $P[($ student 1 NOT born on Feb. 29) \cap (student 2 NOT born on Feb. 29)
... \cap (student k NOT born on Feb. 29)]

$$
=1-\alpha^{k}=1-\left(\frac{365.4}{365.4+1}\right)^{k} \quad \text { exactly } \quad 80 \text { students } \sim 5 \%
$$

$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed
$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed if $k>365$ then?
$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed if $k>365$ use pigeonhole
$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed

$$
\begin{array}{r}
G P[(1,2) \cup(1,3) \cup(1,4) \ldots \underbrace{(1, k)}_{1 / 365} \cup(2,3) \cup(2,4) \ldots \cup(2, k) \ldots \ldots \cup(k-1, k)] \\
\quad \text { if } k>365 \text { use pigeonhole }
\end{array}
$$

$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed awful $=1-P($ all k have distinct birthdays $)$
$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed $C P[(1,2) \cup(1,3) \cup(1,4) \ldots \cup \underbrace{(1, k)}_{1 / 365} \cup(2,3) \cup(2,4) \ldots \cup(2, k) \ldots \ldots \cup(k-1, k)]$ awful
$\rightarrow P($ and person has different bday than 1st $)=\frac{364}{365}=P(A)$
$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed $\underset{\text { awful }}{ } \underset{\sim}{P}[(1,2) \cup(1,3) \cup(1,4) \ldots \cup \underbrace{(1, k)}_{1 / 365} \cup(2,3) \cup(2,4) \ldots \cup(2, k) \ldots \ldots \cup(k-1, k)]$
if $k>365$ use pigeonhole
$=1-P($ all k have distinct birthdays $)$
$\rightarrow P($ and person has different bay than 1st $)=\frac{364}{365}=P(A)$ $P\left(3 r d \ldots1_{s t} \& 2 n d\right)$

$$
=\frac{363}{365}=P(B)
$$

$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed $\underset{\text { awful }}{C P[(1,2) \cup(1,3) \cup(1,4) \ldots \cup \underbrace{(1, k)}_{1 / 365} \cup(2,3) \cup(2,4) \ldots \cup(2, k) \ldots \ldots \cup(k-1, k)]}$
$=1-P$ (all k have distinct birthdays)
$\rightarrow P\left(\right.$ and person has different bay than 1st) $=\frac{364}{365}=P(A)$

$$
P(3 r d \ldots \underbrace{1 s+\& 2 n d)}_{\text {assuming? }}=\frac{363}{365}=P(B)
$$

$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed $G P[(1,2) \cup(1,3) \cup(1,4) \ldots \underbrace{(1, k)}_{1 / 365} \cup(2,3) \cup(2,4) \ldots \cup(2, k) \ldots \ldots \cup(k-1, k)]$
awful \quad if $k>365$ use pigeonhole
if $k>365$ use pigeonhole
$=1-P$ (all k have distinct birthdays)
$\rightarrow P($ and person has different bday than 1st $)=\frac{364}{365}=P(A)$

$$
P(3 r d \ldots \underbrace{1 s t \& 2 n d)}_{\text {assuming 1st \& Ind differ }}=\frac{363}{365}=P(B)
$$

this is actually "conditional probability" which will be covered next time.
$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed $C_{\text {awful }} P[(1,2) \cup(1,3) \cup(1,4) \ldots \cup \underbrace{(1, k)}_{1 / 365} \cup(2,3) \cup(2,4) \ldots \cup(2, k) \ldots \ldots \cup(k-1, k)]$ $\Delta=1-P$ (all k have distinct birthdays)
$\triangle P($ and person has different bday than 1st $)=\frac{364}{365}=P(A)$

$$
\begin{array}{lllll}
P(3 r d & \cdots & \cdots & \cdots & 1 s t \& 2 n d) \\
P(4 t h & \cdots & \cdots & \ldots & (1-3))
\end{array}=\frac{363}{365}=P(B)=\frac{362}{365}=P(C)
$$

$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed

$$
\begin{aligned}
& C_{\text {awful }} P[(1,2) \cup(1,3) \cup(1,4) \ldots \cup \underbrace{(1, k)}_{1 / 365} \cup(2,3) \cup(2,4) \ldots \cup(2, k) \ldots \ldots \cup(k-1, k)] \\
& \Delta=1-P \text { (all } k \text { have distinct birthdays) } \\
& \triangle P(\text { and person has different day than dst })=\frac{364}{365}=P(A) \\
& P(3 \text { rd } \cdots-1 s t \& 2 n d)=\frac{363}{365}=P(B) \\
& P(4 \text { th } \ldots \quad \ldots \quad(1-3)) \quad=\frac{362}{365}=P(C) \\
& \text { etc } \\
& =1-[P(A) \cap P(B) \cap P(C) \ldots]
\end{aligned}
$$

$P(\geqslant 2$ people in a group of k have same birthday) no Feb. 29 allowed

$$
\begin{aligned}
& \zeta_{\text {awful }} P[(1,2) \cup(1,3) \cup(1,4) \ldots \cup \underbrace{(1, k)}_{1 / 365} \cup(2,3) \cup(2,4) \ldots \cup(2, k) \ldots \ldots \cup(k-1, k)] \\
& \left(\begin{array}{cc}
\text { awful } & 1 / 365 \\
\Delta=1-P(\text { all } k \text { have distinct birthdays) }
\end{array}\right. \\
& \square P(\text { and person has different bray than dst })=\frac{364}{365}=P(A) \\
& P(3 \text { rd } \cdots-1 s t \& 2 n d)=\frac{363}{365}=P(B) \\
& P(4 \text { th } \quad \cdots \quad \cdots \quad \cdots(1-3)) \quad=\frac{362}{365}=P(C) \\
& =1-[P(A) \cap P(B) \cap P(C) \ldots]=1-\frac{\frac{365!}{(365-k)!}}{365^{k}}=1-\frac{365 \cdot 364 \cdot 363 \cdots(363-k+1)}{365^{k}}
\end{aligned}
$$

$P(\geqslant 2$ people in a group of k have same birthday $)$

$$
=1-\frac{\frac{365!}{(365-k)!}}{365^{k}}=1-\frac{365 \cdot 364 \cdot 363 \cdots(363-k+1)}{365^{k}}
$$

$P(\geqslant 2$ people in a group of k have same birthday

$$
=1-\frac{\frac{365!}{(365-k)!}}{365^{k}}=1-\frac{365 \cdot 364 \cdot 363 \cdots(363-k+1)}{365^{k}}=1-\frac{(365)_{k}}{365^{k}}
$$

$P(\geqslant 2$ people in a group of k have same birthday

$$
\begin{aligned}
& =1-\frac{\frac{365!}{(365-k)!}}{365^{k}}=1-\frac{365 \cdot 364 \cdot 363 \cdots(363-k+1)}{36 S^{k}}=1-\frac{(365)_{k}}{365^{k}} \\
k & =2 \rightarrow P \sim 0.27 \%\left(\frac{1}{365}\right)
\end{aligned}
$$

$P(\geqslant 2$ people in a group of k have same birthday $)$

$$
\begin{aligned}
& =1-\frac{\frac{365!}{(365-k)!}}{365^{k}}=1-\frac{365 \cdot 364 \cdot 363 \cdots(363-k+1)}{36 S^{k}}=1-\frac{(365)_{k}}{365^{k}} \\
& k=2 \rightarrow P \sim 0.27 \%\left(\frac{1}{365}\right) \\
& k=4 \rightarrow P \sim 1.64 \%
\end{aligned}
$$

$P(\geqslant 2$ people in a group of k have same birthday $)$

$$
\begin{aligned}
& =1-\frac{\frac{365!}{(365-k)!}}{365^{k}}=1-\frac{365 \cdot 364.363 \cdots(363-k+1)}{36 S^{k}}=1-\frac{(365)_{k}}{365^{k}} \\
& k=2 \rightarrow P \sim 0.27 \%\left(\frac{1}{365}\right) \\
& k=4 \rightarrow P \sim 1.64 \% \\
& k=23 \rightarrow P \sim 50.73 \%
\end{aligned}
$$

$P(\geqslant 2$ people in a group of k have same birthday)

$$
\begin{aligned}
& =1-\frac{\frac{365!}{(365-k)!}}{365^{k}}=1-\frac{365 \cdot 364 \cdot 363 \cdots(363-k+1)}{365^{k}}=1-\frac{(365)_{k}}{365^{k}} \\
& k=2 \rightarrow P \sim 0.27 \%\left(\frac{1}{365}\right) \\
& k=4 \rightarrow P \sim 1.64 \% \\
& k=23 \rightarrow P \sim 50.73 \% \\
& k=30 \rightarrow P \sim 70.6 \%
\end{aligned}
$$

$P(\geqslant 2$ people in a group of k have same birthday

$$
\begin{aligned}
& =1-\frac{\frac{365!}{(365-k)!}}{365^{k}}=1-\frac{365 \cdot 364 \cdot 363 \cdots(363-k+1)}{365^{k}}=1-\frac{(365)_{k}}{365^{k}} \\
& k=2 \rightarrow P \sim 0.27 \%\left(\frac{1}{365}\right) \\
& k=4 \rightarrow P \sim 1.64 \% \\
& k=23 \rightarrow P \sim 50.73 \% \\
& k=30 \rightarrow P \sim 70.6 \% \\
& k=70 \rightarrow P \sim 99.9 \%
\end{aligned}
$$

$P(\geqslant 2$ people in a group of k have same birthday

$$
\begin{aligned}
& =1-\frac{\frac{365!}{(365-k)!}}{365^{k}}=1-\frac{365 \cdot 364.363 \cdots(363-k+1)}{365^{k}}=1-\frac{(365)_{k}}{365^{k}} \\
& k=2 \rightarrow P \sim 0.27 \%\left(\frac{1}{365}\right) \\
& k=4 \rightarrow P \sim 1.64 \% \quad k \sim 116 \rightarrow P \sim 1-\frac{1}{10^{9}} \\
& k=23 \rightarrow P \sim 50.73 \% \\
& k=30 \rightarrow P \sim 70.6 \% \\
& k=70 \rightarrow P \sim 99.9 \%
\end{aligned}
$$

$P(\geqslant 2$ people in a group of k have same birthday

$$
\begin{array}{ll}
=1-\frac{\frac{365!}{(365-k)!}}{365^{k}}=1-\frac{365 \cdot 364.363 \cdots(363-k+1)}{365^{k}}=1-\frac{(365)_{k}}{365^{k}} \\
k=2 \rightarrow P \sim 0.27 \%\left(\frac{1}{365}\right) & k \sim 116 \rightarrow P \sim 1-\frac{1}{10^{9}} \\
k=4 \rightarrow P \sim 1.64 \% & \\
k=23 \rightarrow P \sim 50.73 \% & \\
k=30 \rightarrow P \sim 70.6 \% & \\
k=70 \rightarrow P \sim 99.9 \% &
\end{array}
$$

$P(\geqslant 2$ people in a group of k have same birthday

$$
\begin{array}{ll}
=1-\frac{\frac{365!}{(365-k)!}}{365^{k}}=1-\frac{365 \cdot 364.363 \cdots(363-k+1)}{365^{k}}=1-\frac{(365)_{k}}{365^{k}} \\
k=2 \rightarrow P \sim 0.27 \%\left(\frac{1}{365}\right) & k \sim 116 \rightarrow P \sim 1-\frac{1}{10^{9}} \\
k=4 \rightarrow P \sim 1.64 \% & \\
k=23 \rightarrow P \sim 50.73 \% & \\
k=30 \rightarrow P \sim 70.6 \% & \left(10^{80} \sim \# \text { atoms in universe }\right) \\
k=300 \rightarrow P \sim 1-\frac{1}{10^{80}} \\
k=70 \rightarrow P \sim 99.9 \% & (k>365 \rightarrow P=1)
\end{array}
$$

$P(\geqslant 2$ people in a group of k have same birthday $)$
Didn't cover this slide in class. It explains bet \#2.

$$
\longrightarrow \quad 1-\frac{365 \cdot 364 \cdot 363 \cdots(363-k+1)}{365^{k}}
$$

For the bet involving k people born in a month $\omega / 30$ days substitute $365 \rightarrow 30$

$$
(k=10) \quad 1-\frac{30 \cdot 29 \cdot 28 \cdot \cdots \cdot 23 \cdot 22 \cdot 21}{30^{10}} \sim 0.815
$$

