PLANAR GRAPHS
CAny graph that can be drawn in the plane without crossings

$$
\begin{aligned}
& G=(V, E) \\
& V=6 \\
& E=8 \\
& F=\text { \#faces }=4
\end{aligned}
$$

disjoint regions, one of which is unbounded
claim:
any planar graph can be drawn w/ straight edges

A planar graph that is "embedded" (drawn) without crossings is a plane graph.

EULER FORMULA for planar connected graphs: $V-E+F=2$
Proof by induction on number of faces:
Base case $\rightarrow F=1 \rightarrow G$ is a tree $\rightarrow V=E+1$

so $(E+1)-E+1=2$
Given $G=(V, E) \omega / F>1$ faces,
remove an edge e between 2 faces, $f_{1} \& f_{2}$.
Either f_{1} or f_{2} is a bounded face,
so e is on a cycle (e is not a cut edge)

hypothesis
$G G-e$ is connected \& f_{1}, f_{2} merge: $\quad V-(E-1)+(F-1)=2$
$C V-E+F=2$
Note that this also holds for multigraphs

For any planar connected graph $\omega / V>3, E \leqslant 3 V-6 \quad(\& F \leqslant 2 V-4)$

Every face has $\geqslant 3$ edges (for $V>3$) $\sum_{\text {all faces }} e \geqslant 3 F$) $F \leqslant \frac{2 E}{3}$ what if $v \leq 3$? \rightarrow then $E \leqslant V$

$$
\begin{aligned}
& V-E+F=2 \\
& V-2=E-F \\
& V-2 \geqslant E-\frac{2 E}{3} \\
& 3 V-6 \geqslant E
\end{aligned} \quad \begin{aligned}
& \text { Also } \\
& V-2 \geqslant \frac{3 F}{2}-F \\
& 2 V-4 \geqslant F
\end{aligned}
$$

$$
\begin{gathered}
E \leq 3 V-6 \\
10 \leq 15-6 \\
!!!
\end{gathered}
$$

Not planar

$$
\begin{aligned}
& E \leq 3 V-6 \\
& 9 \leq 18-6 \text { ok! }
\end{aligned}
$$

Inconclusive

not iff
All planar graphs have $\epsilon \leqslant 3 v-6$ Some non-planar graphs can too
$V-E+F=2 \quad$ What if G has no triangles?
Every edge belongs to 1 or 2 faces $\left.\sum_{\text {all laces }} e \leqslant 2 E\right\} \quad E \geqslant 2 F$ Every face has $\geqslant 4$ edges (for $V>4) \quad \sum_{\text {all faces }} e \geqslant 4 F$)

$$
\begin{aligned}
& E-F=V-2 \\
& E-\frac{E}{2} \leqslant V-2 \\
& \frac{E \leqslant 2 V-4}{\text { instead }} \text { of } \leqslant 3 V-6
\end{aligned}
$$

$$
\begin{gathered}
E \leq 3 V-6 \\
10 \leq 15-6 \\
!!!
\end{gathered}
$$

!!!

Not Planar

$$
v=6, E=9
$$

$$
\text { for triangle free: } \begin{aligned}
& E \leqslant 2 v-4 \\
& 9 \leqslant 2.6-4
\end{aligned}
$$

It turns out that every non-planar graph "contains" one of these two shapes.
 - see links

$$
E=3 V-6
$$

... for triangulations

$$
\begin{aligned}
V-E+F & =2 \\
E-F & =V-2 \\
E-\frac{2 E}{3} & =V-2 \\
E & =3 V-6
\end{aligned}
$$

What is the average degree of a triangulation?

$$
\frac{1}{V} \cdot \sum_{i=1}^{V} d\left(v_{i}\right)=\frac{1}{V} \cdot 2 E=\frac{6 V-12}{V} \leq 6
$$

C Every triangulation has a vertex with degree ≤ 5

Q Implies the same for any planar graph (every graph is a spanning subgraph of a triangulation)

COLORING $G \rightarrow$ no adjacent vertices get same color
G is k-colorable if we can use $\leqslant k$ colors
$\chi(G): \min \#$ colors we can use to color G
chromatic number
$\left.\begin{array}{l}\text { Our map is } \\ 4 \text {-colorable }\end{array}\right\} x \leqslant 4$ $x p \dot{\omega} \mu \alpha=$ color
...but not 3-colorable ${ }^{\text {P }}$

EXAM SCHEDULING
students: S_{1}

classes $c_{1} c_{2} c_{3} c_{4} c_{5}$

Can't schedule exam simultaneously for classes taken by s_{i} Want to minimize exam slots.
Make G : $V=$ classes $\quad E=$ conflicts
Colors $=$ slots (minimize colors)
If no edge has same color at endpoints,

then no 2 classes are in same slot

EXAM SCHEDULING

classes $c_{1} c_{2} c_{3} c_{4} c_{5}$

Can't schedule exam simultaneously for classes taken by s_{i} Want to minimize exam slots.
Make G : $V=$ classes $\quad E=$ conflicts
Colors $=$ slots (minimize colors)
If no edge has same color at endpoints,

then no 2 classes are in same slot

