Any graph that can be drawn in the plane without crossings.

\[G = (V, E) \]

- \(V = 6 \)
- \(E = 8 \)
- \(F = \text{#faces} = 4 \)

Any planar graph can be drawn w/ straight edges.

A planar graph that is “embedded” (drawn) without crossings is a plane graph.
Euler Formula for planar connected graphs: \[V - E + F = 2 \]

Proof by induction on number of faces:

Base case \(F = 1 \) \(\rightarrow \) \(G \) is a tree \(\rightarrow \) \(V = E + 1 \)

so \((E+1) - E + 1 = 2 \) \(\checkmark \)

Given \(G = (V, E) \) \(\omega \) \(F > 1 \) faces,
remove an edge \(e \) between 2 faces, \(f_1 \) & \(f_2 \).

Either \(f_1 \) or \(f_2 \) is a bounded face,
so \(e \) is on a cycle (\(e \) is not a cut edge)

\(\Downarrow \) \(G - e \) is connected & \(f_1, f_2 \) merge:

\(V - (E - 1) + (F - 1) = 2 \)

\(\Downarrow \) \(V - E + F = 2 \) \(\checkmark \)

Note that this also holds for multigraphs \(\infty \)
For any planar connected graph G with $V > 3$, $E \leq 3V - 6$ ($\& \ F \leq 2V - 4$)

Every edge belongs to 1 or 2 faces \[\sum_{\text{all faces}} e \leq 2E \]

Every face has ≥ 3 edges (for $V > 3$) \[\sum_{\text{all faces}} e \geq 3F \]

\[V - E + F = 2 \]
\[V - 2 = E - F \]
\[V - 2 \geq E - \frac{2E}{3} \]
\[3V - 6 \geq E \]
\[2V - 4 \geq F \]

Also \[V - 2 \geq \frac{3F}{2} - F \]

What if $V \leq 3$? \[\leftrightarrow \text{then } E \leq V \]

$V = 8$ $E = 9$ $F = 3$
$E \leq 3V - 6$

$10 \leq 15 - 6$

Not planar

$E \leq 3V - 6$

$9 \leq 18 - 6$ OK!

Inconclusive

not iff

All planar graphs have $E \leq 3V - 6$

Some non-planar graphs can too
V - E + F = 2 \[\text{What if } G \text{ has no triangles?}\]

Every edge belongs to 1 or 2 faces

Every face has \(\geq 4\) edges (for \(V > 4\))

\[
\begin{align*}
E - F &= V - 2 \\
E - \frac{E}{2} &\leq V - 2 \\
E &\leq 2V - 4
\end{align*}
\]

\[
\sum e \leq 2E \quad \text{all faces} \quad \sum e \geq 4F \quad \text{all faces}
\]

\(E \geq 2F\)
\[E \leq 3V - 6 \]
\[10 \leq 15 - 6 \]

\[9 \leq 2 \cdot 6 - 4 \]

NOT PLANAR

For triangle free:

\[E \leq 2V - 4 \]
It turns out that every non-planar graph "contains" one of these two shapes.

e.g.

see links
\[E = 3V - 6 \]

... for triangulations

Every edge belongs to 1 or 2 faces

Every face has 3 edges (for \(V > 3 \))

\[\sum e \leq 2E \]
\[\sum e \leq 3F \]
\[2E \geq 3F \]

\[V - E + F = 2 \]
\[E - F = V - 2 \]
\[E - \frac{2E}{3} = V - 2 \]
\[E = 3V - 6 \]
What is the average degree of a triangulation?

\[
\frac{1}{V} \cdot \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V-12}{V} < 6
\]

Every triangulation has a vertex with degree ≤ 5

Implies the same for any planar graph

(every graph is a spanning subgraph of a triangulation)
COLORING $G \rightarrow$ no adjacent vertices get same color

G is k-colorable if we can use $\leq k$ colors

$\chi(G) : \min \# \text{ colors we can use to color } G$

χ = color

Our map is 4-colorable $\chi \leq 4$

...but not 3-colorable

subgraph K_4
so $\chi \geq 4$
EXAM SCHEDULING

students: S_1, S_2, S_3, S_4, S_5
classes: c_1, c_2, c_3, c_4, c_5

Can't schedule exam simultaneously for classes taken by S_i
Want to minimize exam slots.

Make G: $V =$ classes $E =$ conflicts

Colors = slots (minimize colors)

If no edge has same color at endpoints,
then no 2 classes are in same slot
EXAM SCHEDULING

students: S_1, S_2, S_3, S_4, S_5

classes: C_1, C_2, C_3, C_4, C_5

Can't schedule exam simultaneously for classes taken by S_i.

Want to minimize exam slots.

Make $G: V = \text{classes}, E = \text{conflicts}$

Colors = slots (minimize colors)

If no edge has same color at endpoints, then no 2 classes are in same slot.