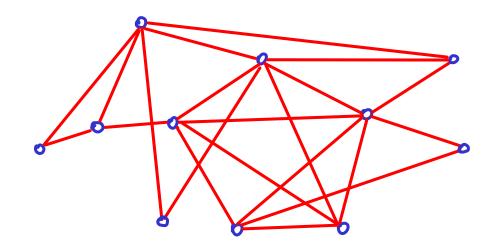
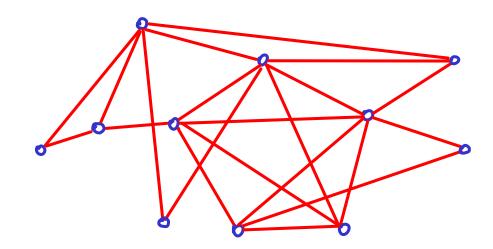


Given
$$G$$
, a subset S of $V(G)$
is a clique if every $s_i, s_j \in S$
share an edge in G .



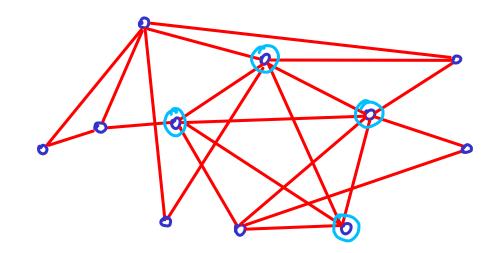
Given G, a subset S of
$$V(G)$$

is a clique if every $s_i, s_j \in S$
share an edge in G.
The induced subgraph obtained
by removing all but S from $V(G)$
is a complete graph (Ks)



Given G, a subset S of
$$V(G)$$

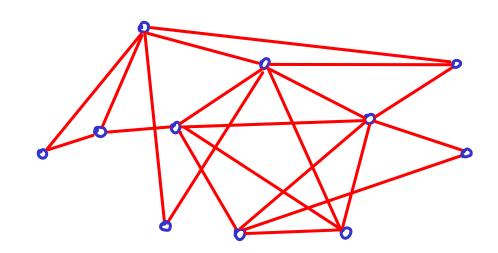
is a clique if every $s_i, s_j \in S$
share an edge in G.
The induced subgraph obtained
by removing all but S from $V(G)$
is a complete graph (Kg)



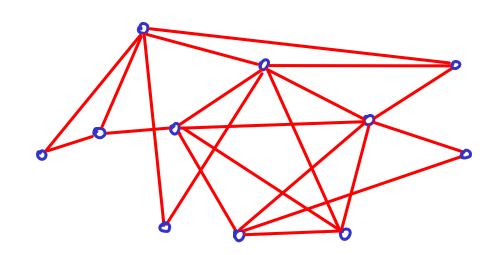
Given G, a subset S of
$$V(G)$$

is a clique if every $s_i, s_j \in S$
share an edge in G.
The induced subgraph obtained
by removing all but S from $V(G)$

is a complete graph (Ks)

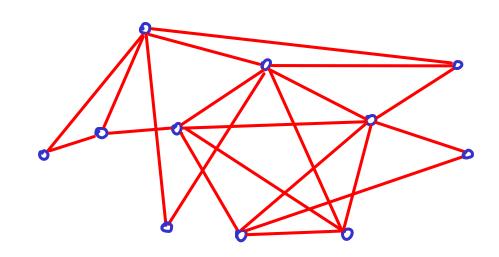


Given
$$G$$
, a subset S of $V(G)$
is an independent set if
 \underline{MO} $S_i, S_j \in S$ share an edge in G .



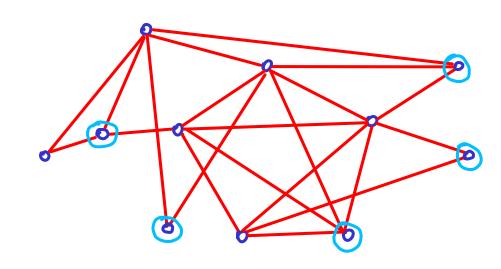
Given G, a subset S of
$$V(G)$$

is an independent set if
no s_i,s_j \in S share an edge in G
The induced subgraph obtained
by removing all but S from $V(G)$
is an edgeless graph.



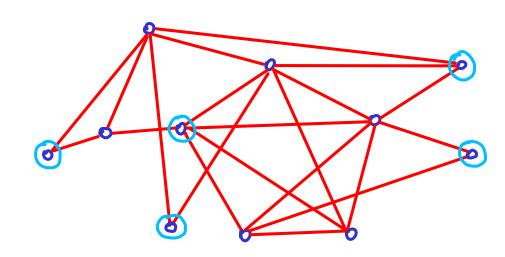
Given G, a subset S of
$$V(G)$$

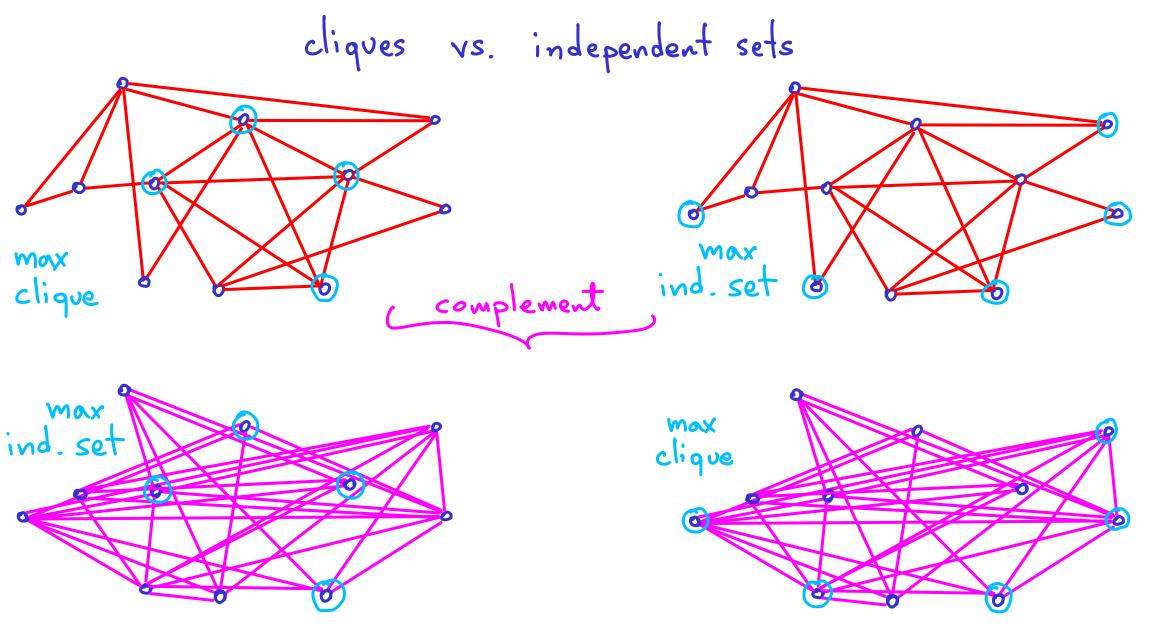
is an independent set if
No $s_i, s_j \in S$ share an edge in G
The induced subgraph obtained
by removing all but S from $V(G)$
is an edgeless graph.

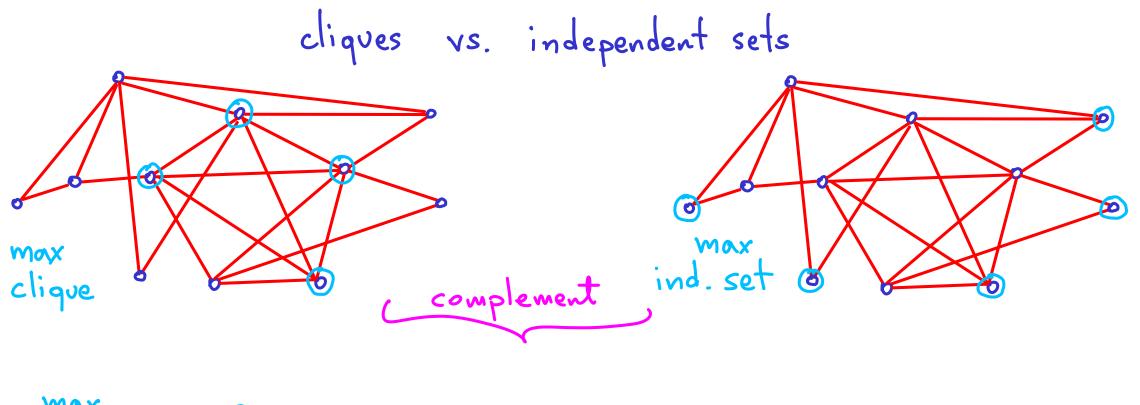


Given G, a subset S of
$$V(G)$$

is an independent set if
no s_i,s_j \in S share an edge in G
The induced subgraph obtained
by removing all but S from $V(G)$
is an edgeless graph.

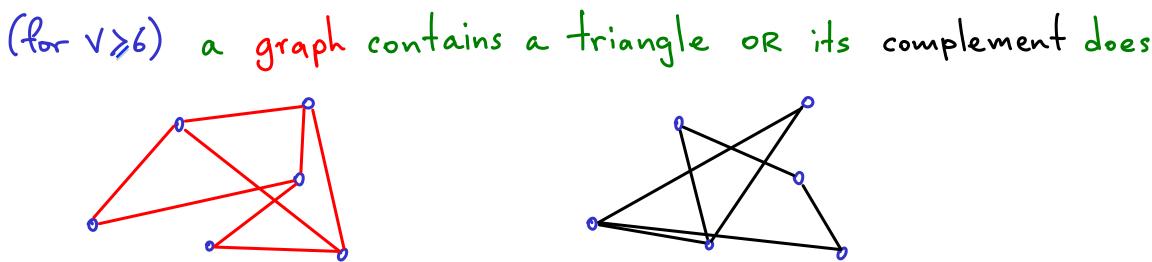


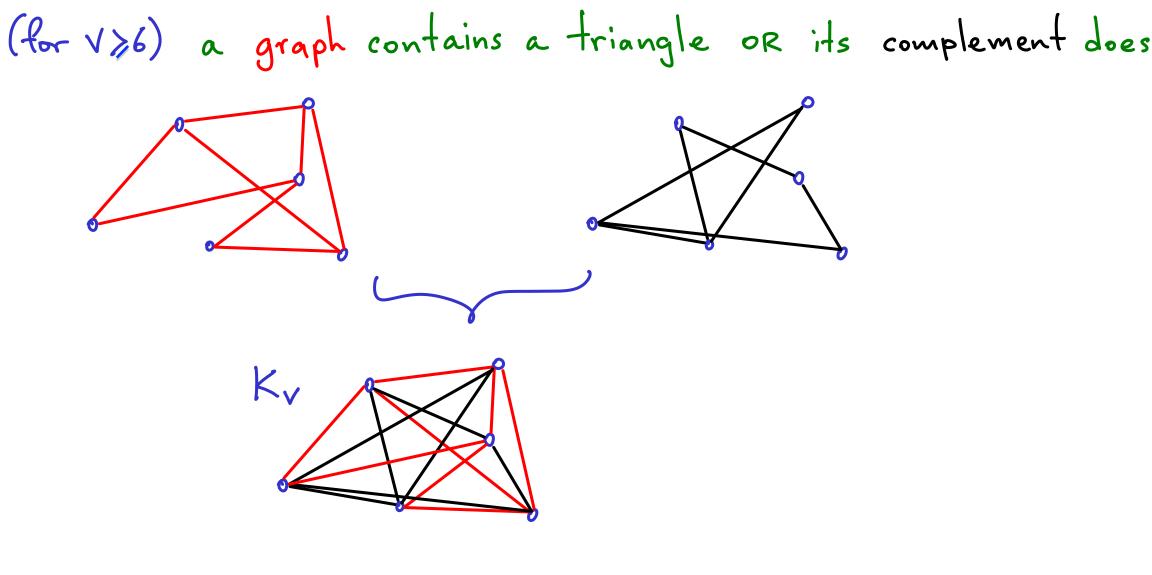




Claim: Every graph with $|V| \ge 6$ contains a triangle (clique of size 3) OR an independent set of size 3

Claim: Every graph with
$$|V| \ge 6$$
 contains
a triangle (clique of size 3) OR an independent set of size 3
Rephrase: (for $V \ge 6$) a graph contains a triangle
or its complement does

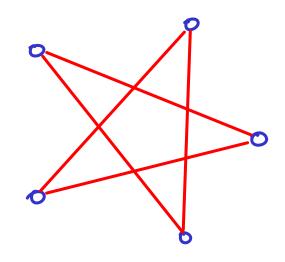


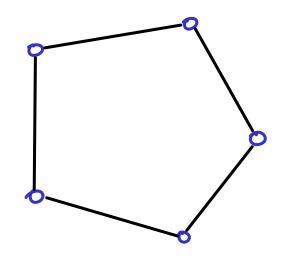


(for V>6) a graph contains a triangle or its complement does Equivalent statement If we color each edge of Kr red or black, then we must get a red triangle or a black triangle

|v| ∠ 6 ?

Recap: if you want a clique or an independent set of size 3 then you'll be happy as long as |V| > 6(> R(3,3) = 6



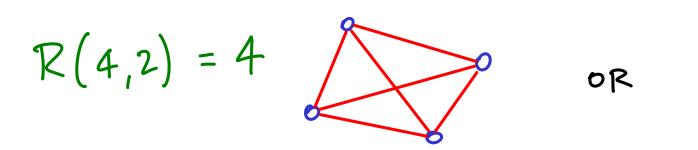


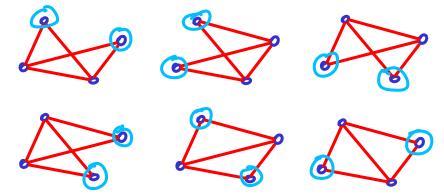
Recap: if you want a clique or an independent set of size 3 then you'll be happy as long as IVI>6 (> R(3,3) = 6R(4,4)

Recap: if you want a clique or an independent set of size 3 then you'll be happy as long as IVI>6 (> R(3,3) = 6R(S,S)R(4,4)we don't know. [43...49]

Recap: if you want a clique or an independent set of size 3 then you'll be happy as long as IVI >6 (> R(3,3) = 6R(n,n)R(s,s)R(4,4)~ exponential we don't know. [43...49] even for small values we will probably never know the exact answer Recap: if you want a clique or an independent set of size 3 then you'll be happy as long as IVI >6 (> R(3,3) = 6R(n,n)R(s,s)R(4,4)~ exponential we don't know! [43...49] 18 even for small values we will probably never know the exact answer For more, see Ramsey's Thm.

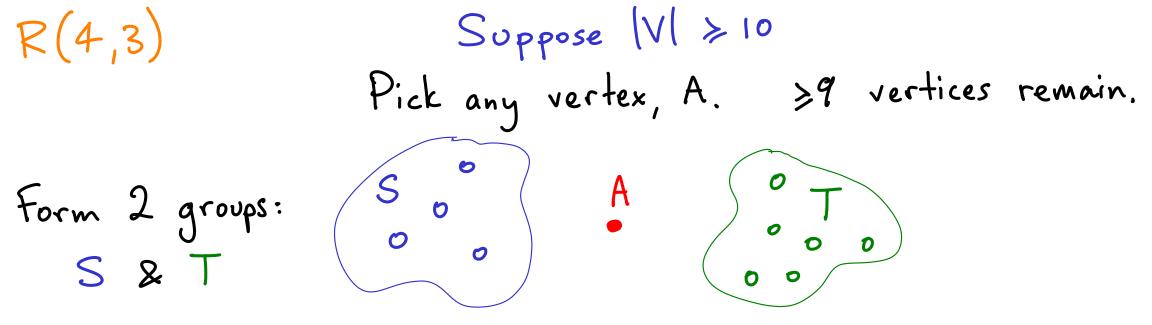
R(4,2) = ?



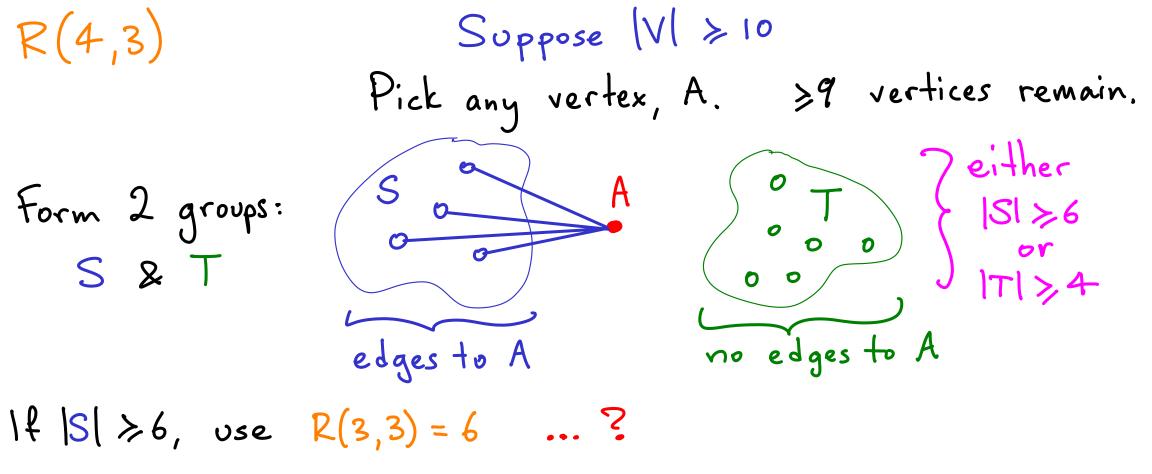


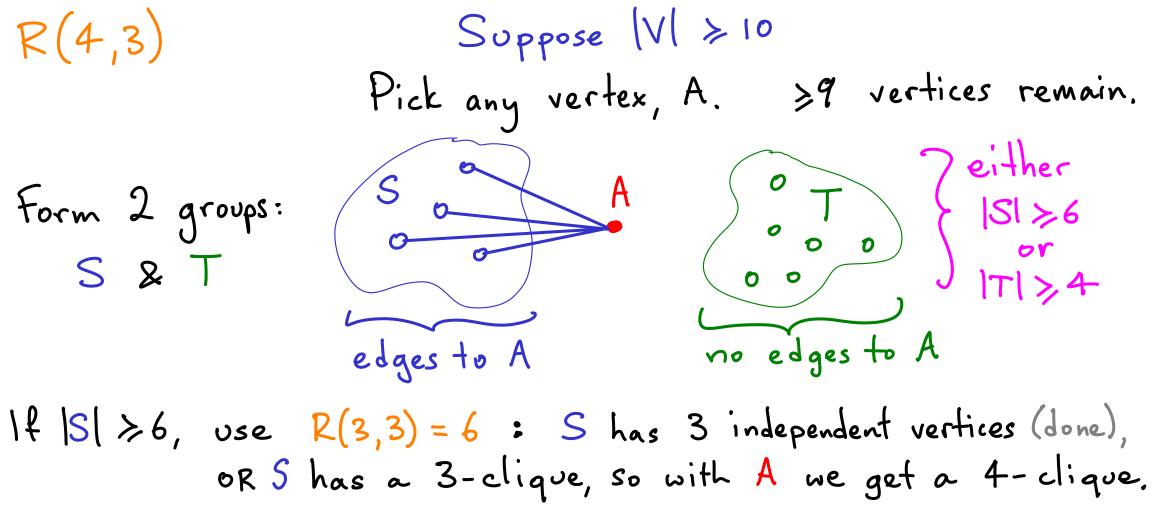
R(4,3)

Suppose VI > 10 Pick any vertex, A. >9 vertices remain. A



$$R(4,3) \qquad \begin{array}{l} \text{Suppose } |V| \geq 10 \\ \text{Pick any vertex, } A. \geq 9 \text{ vertices remain.} \\ \hline \\ \text{Form 2 groups:} \\ \text{S & T} \\ \hline \\ \text{edges to } A \\ \text{edges to } A \\ \hline \\ \text{ro edges to } A \\ \hline \\ \text{ro edges to } A \\ \hline \\ \text{ro edges to } A \\ \hline \\ \end{array}$$





$$R(4,3)$$
Suppose $|V| \ge 10$
Pick any vertex, A. ≥ 9 vertices remain.
Form 2 groups:
$$S \& T$$

$$edges to A$$

$$O = 0$$

$$S \& T$$

$$O = 0$$

$$S & T$$

$$O = 0$$

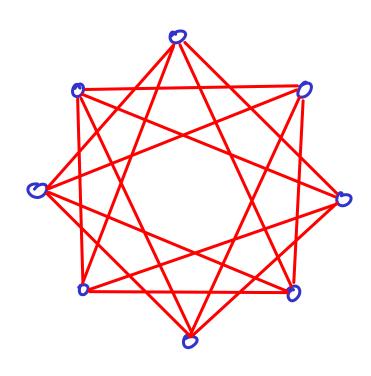
$$O = 0$$

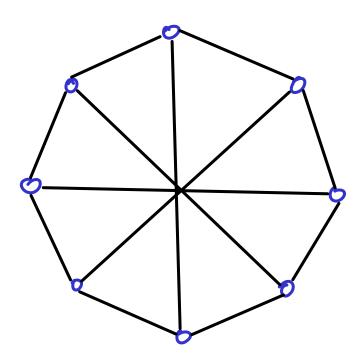
$$S & T$$

$$O = 0$$

$$O$$

 $R(4,3) \leq 10$ R(4,3) > 8





 $R(4,3) \leq 10$... turns out R(4,3) = 9R(4,3) > 8 4) not terribly hard 4) notice R(x,y) = R(y,x)

This is where class ended, but you should be able to follow the previous examples and work through the rest as well.

R(4,4)

Suppose VI >18 Pick any vertex, A. >17 vertices remain. A

$$R(4,4)$$
Suppose $|V| \ge 18$
Pick any vertex, A. ≥ 17 vertices remain.
Form 2 groups:
$$S \And T$$

$$edges to A$$

$$ro \ edges to A$$

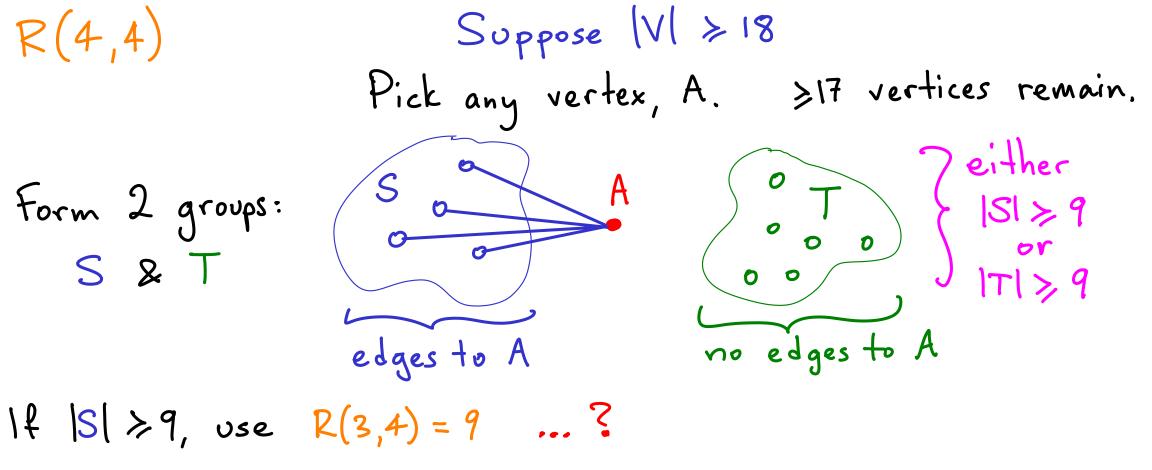
$$R(4,4)$$

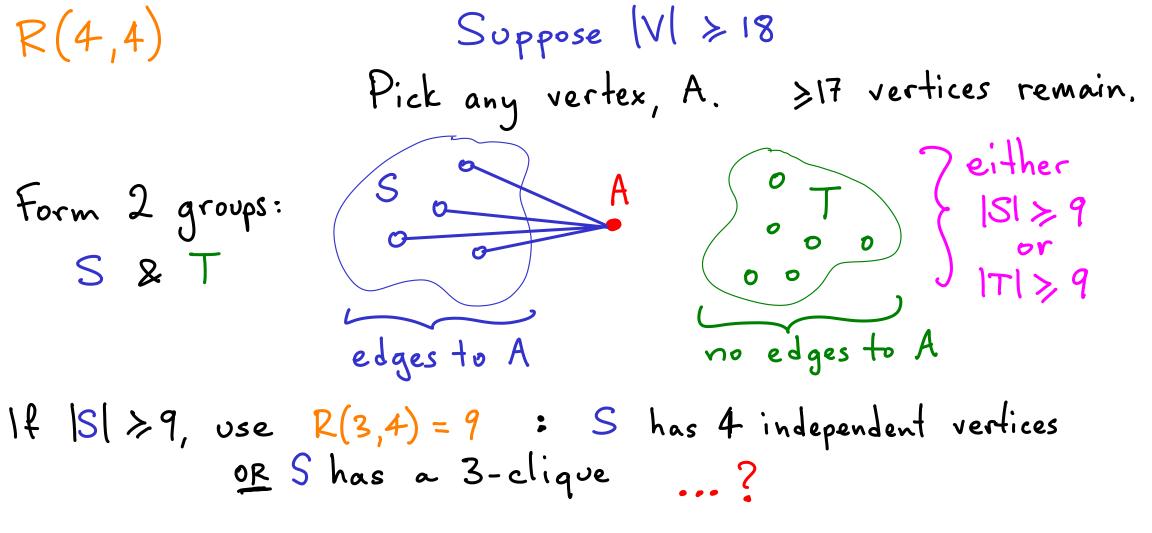
$$Form 2 groups:$$

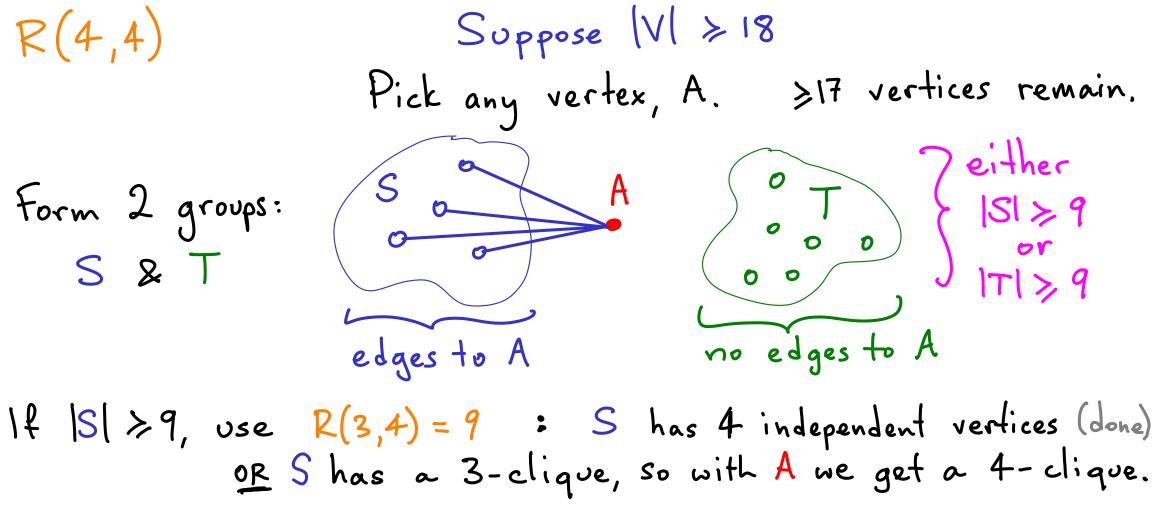
$$S & T$$

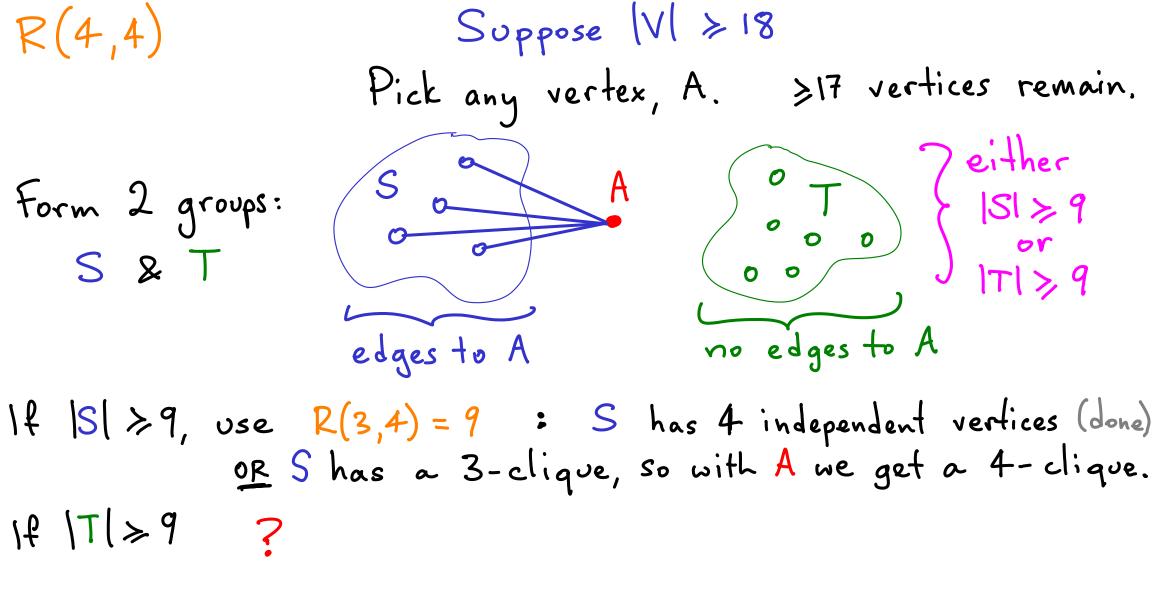
$$S$$

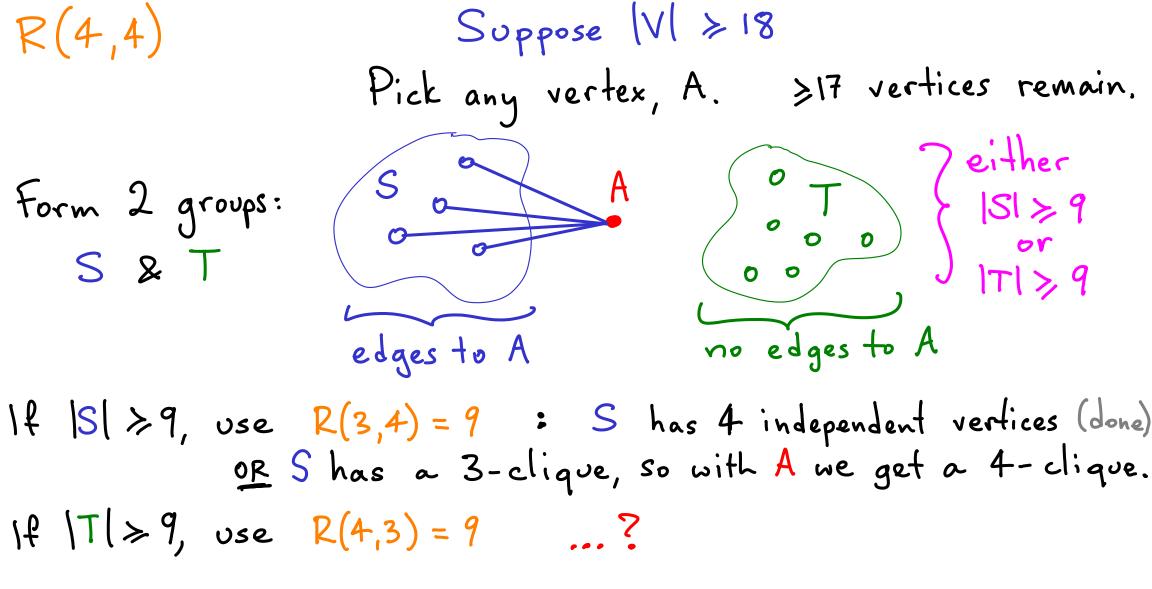
\f |S(> 7 \$

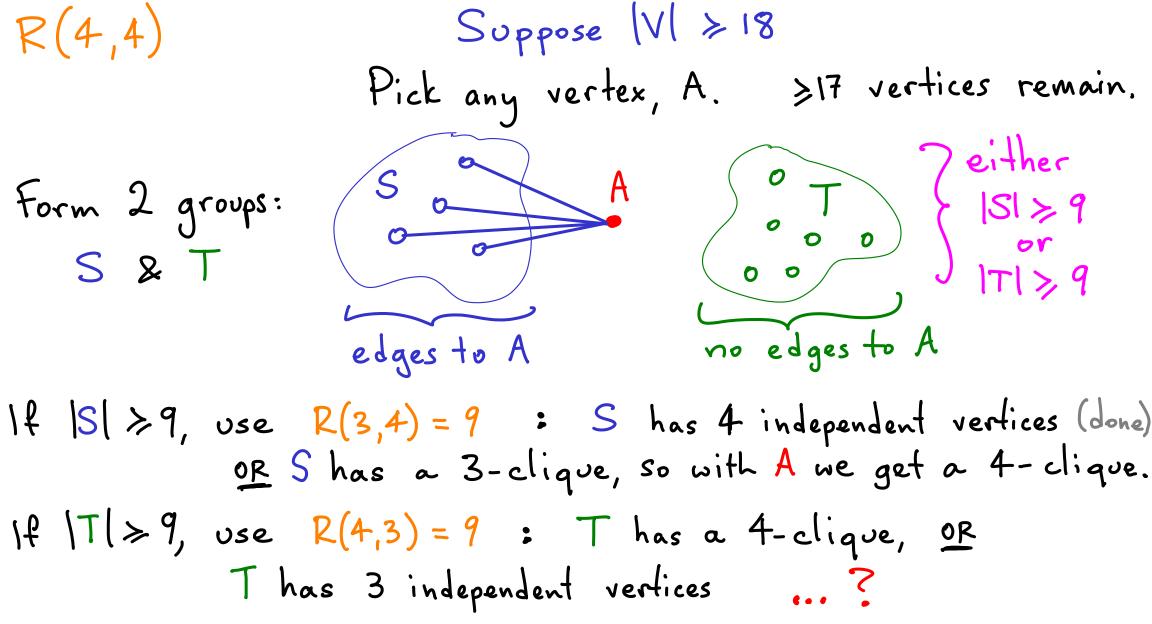


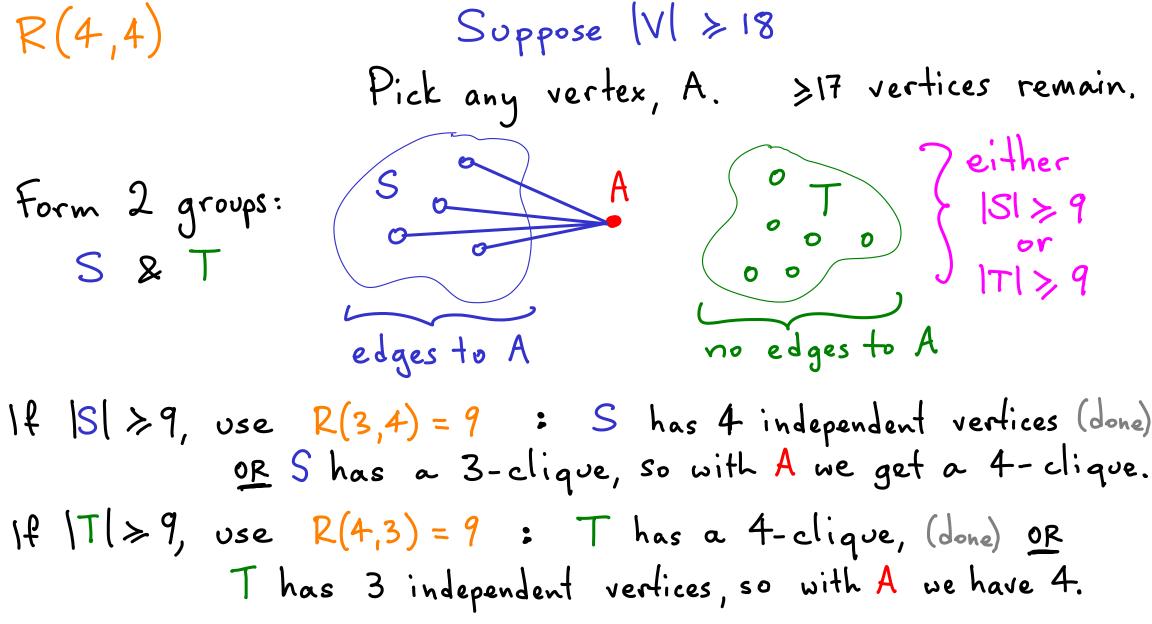


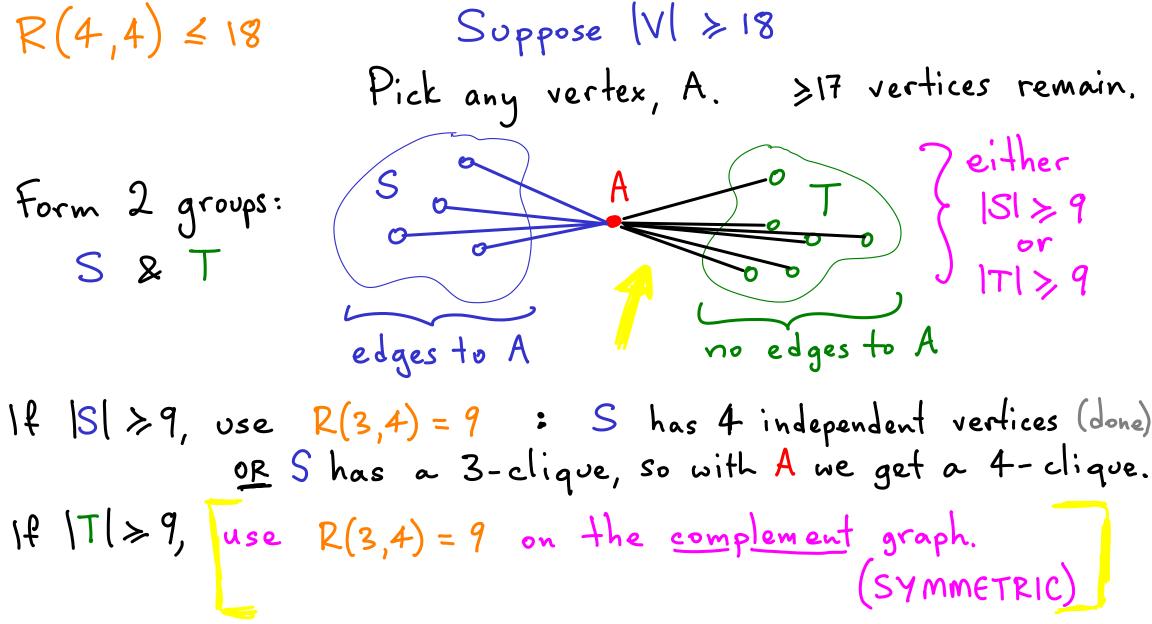












Notes:

(i) if we only knew that
$$R(4,3) \leq 10$$
 (instead of = 9)
then ...?

Notes:

(1) if we only knew that
$$R(4,3) \leq 10$$
 (instead of =9)
we could have used $|V| > 20$ for $R(4,4)$

Notes:

(1) if we only knew that
$$R(4,3) \leq 10$$
 (instead of =9)
we could have used $|V| > 20$ for $R(4,4)$

(2) there is a graph
$$w/17$$
 vertices with no
clique or independent set of size 4
 $\langle R(4,4) = 18$