$\bigcirc \neg \\ \checkmark$ don't {FT / FT contradict {FF / TT

PROOF BY CONTRAPOSITIVE
We don't know how to prove
$$A \rightarrow B$$
 (easily), so we try to
start by assuming $\neg B$. If we conclude $\neg A$, we are done.
Prove: if $7x+9$ is even, then x is odd (for $x \in \mathbb{Z}$)
 $7x+9 = 2a$ //a:integer $\rightarrow 7x+9$ is even, then x is odd (for $x \in \mathbb{Z}$)
 $7x+9 = 2a //a:integer $\rightarrow 7x+9$ is even, then x is odd (for $x \in \mathbb{Z}$)
 $7x+9 = 2a - 6x - 9$
 $x = 2a - 6x - 9$
 $x = 2a - 6x - 10 + 1$
 $x = 2(a - 3x - 5) + 1$
 $x = 2b+1$ (odd) (b=a-3x-5) \Box
 $7x+9 = odd$ $\Box$$

PROOF By CONTRAPOSITIVE
We don't know how to prove
$$A \rightarrow B$$
 (easily), so we try to
start by assuming $\neg B$. If we conclude $\neg A$, we are done.
Prove: if $x^2 - 6x + 5$ is even, then x is odd
 $x^2 - 6x + 5 = 2a$ direct
 $x^2 - 6x + (5 - 2a) = 0$
 $x = \frac{6 \pm \sqrt{36 + 8a - 20}}{2}$
 $x = 3 \pm \sqrt{4 + 2a}$
 $\overrightarrow{x} = 2b + 1$

PROOF BY CONTRAPOSITIVE
We don't know how to prove
$$A \rightarrow B$$
 (easily), so we try to
start by assuming $\neg B$. If we conclude $\neg A$, we are done.
Prove: if $x^2 - 6x + 5$ is even, then x is odd
 $x^2 - 6x + 5 = 2a$ direct
 $contrapositive$
Suppose x is not odd: $x = 2c$
 $x^2 - 6x + 5 = (2c)^2 - 6 \cdot 2c + 5$
 $= 4c^2 - 12c + 5$
 $= 4c^2 - 12c + 4 + 1$
 $= 2 \cdot (2c^2 - 6c + 2) + 1$
 $= 2 \cdot d + 1$ ($d = 2c^2 - 6c + 2$)
 $x = 2b + 1$

PROOF BY CONTRAPOSITIVE
We don't know how to prove
$$A \rightarrow B$$
 (easily), so we try to
start by assuming $\neg B$. If we conclude $\neg A$, we are done.
Prove : if x is irrational then $\forall x$ is irrational
direct
???
Contrapositive
Suppose $\forall x$ is not irrational
 $\forall x = \frac{a}{b}$
 $x = \frac{a^2}{b^2}$: not irrational \square

PROOF BY CONTRADICTION
a slight generalization of proof by contrapositive
still proving if A then B for now
(a+b)·(a-b)
$$\iff a^2 - ab + ba - b^2 \iff a^2 - b^2$$

You can prove something directly (in one direction)
or work in both directions
instead of starting w/ TB & leading to TA
(which contradicts A \Rightarrow TB)
assume both A and TB are true
& arrive at some contradicting statement

If x is even, then x is not odd
A B
Assume
$$A \wedge \neg B$$
: x is even $x \times is$ odd
(a: int.) $x = 2a$
Notice we met halfway $a = b + \frac{1}{2}$
at an incorrect statement. impossible / absurd / contradiction

PROOF BY CONTRADICTION

For integers
$$a \neq o \& b$$
, there is only one number s.t. $az+b=o$.
(if $ax+b=o$ then for $y\neq x$, $ay+b\neq o$)
A
A
Assume $A \land \neg B$: $ax+b=o \& ay+b=o$
 $ax+b=ay+b$
 $ax=ay$
 $x=y$ - contradicts

V2' IS IRRATIONAL - PROOF BY CONTRADICTION

THERE ARE AN INFINITE NUMBER OF PRIMES
(proof by contradiction)
• Assume that #primes is finite: P1, P2, ..., Pn
• Let
$$\pm = 1 + \prod_{i=1}^{n} p_i$$
 (i.e., $1 + p_1 \times p_2 \times \dots \times p_n$)
• Notice $\pm p_i$ for all i. So if \pm is prime, contradiction.
• If \pm is not prime then \exists prime factor $q \neq t$ of $\pm \int_{and}^{d} 1 < q < n$
 $-$ if $q \neq p_i$ (for all i), contradiction. (to the first assumption)
 $-$ if $q = p_j$, we know q divides $\prod_{i=1}^{n} p_i$
but then it can't also divide $1 + \prod_{i=1}^{n} p_i$ (contr.)