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Abstract

We present a new algorithm for computing undirected shortest paths in the fundamental comparison-

addition model. Due to the generality of the model, our algorithm works on real-weighted undirected
graphs, rather than the integer-weighted graphs assumed by many recent shortest path algorithms. Our
algorithm is actually a general scheme for computing shortest paths and, as special cases, implies new
bounds on the single-source and all-pairs shortest path problems. In a near-linear time preprocessing
phase our algorithm computes a compact structure that facilitates the computation of shortest paths.
After the preprocessing phase our algorithm can compute single-source shortest paths in O(m log �)
time, where � = �(m;n) is the slowly growing inverse-Ackermann function, and m and n are the
number of edges and vertices, respectively. This immediately implies an O(mn log �) undirected all-
pairs shortest path algorithm; we also show that if the ratio of the maximum-to-minimum edge length

is bounded by n(log n)O(1)

then our algorithm solves single-source shortest paths in O(m + n log log n)
time. Both our single-source and all-pairs shortest path algorithms are theoretical improvements over
Dijkstra's algorithm, which was the previous best for real-weighted sparse graphs. Our algorithm takes
the hierarchy-based approach to shortest paths invented by Thorup.

1 Introduction

The problem of computing shortest paths is indisputably one of the most well-studied problems in computer
science. It is somewhat surprising then, that in the setting of real-weighted graphs, many basic shortest path
problems have seen little or no progress since the early work by Dijkstra, Bellman-Ford, Floyd-Warshall, and
others [CLRS01]. For instance, no algorithm for computing single-source shortest paths (SSSP) in arbitrarily
weighted graphs has yet to improve Bellman-Ford's O(mn) time bound, where m and n are the number of
edges and vertices, respectively. The fastest uniform all-pairs shortest path (APSP) algorithm for dense
graphs [Tak92, F76] requires time O(n3

p
log logn= logn), which is just a slight improvement over the O(n3)

bound of the Floyd-Warshall algorithm. Similarly, Dijkstra's O(m + n logn) time algorithm [Dij59, FT87]
remains the best for computing SSSP on non-negatively weighted graphs, and until the recent algorithms of
Pettie [Pet02a, Pet02b], Dijkstra's algorithm [Dij59, J77, FT87] was also the best for computing APSP on
sparse graphs.

In order to improve these bounds most shortest path algorithms depend on a restricted type of input.
There are algorithms for geometric inputs (see Mitchell's survey [M00]), planar graphs [F91, H+97, FR01],
and graphs with randomly chosen edge weights [S73, FG85, MT87, KKP93, KS98, M01, G01]. In recent
years there has also been a focus on computing approximate shortest paths | see Zwick's recent survey
[Z01]. One common assumption is that the graph is integer-weighted, though structurally unrestricted, and
that the machine model is able to manipulate the integer representation of weights. Shortest path algorithms

�This work was supported by Texas Advanced Research Program Grant 003658-0029-1999 and NSF Grant CCR-9988160. A
preliminary version of this paper, titled Computing shortest paths with comparisons and additions, was presented at the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, January 2002, San Francisco, CA. Authors' address: Department of
Computer Sciences, The University of Texas at Austin, Austin, TX 78712.

yAlso supported by an MCD Graduate Fellowship. E-mail: seth@cs.utexas.edu.
zE-mail: vlr@cs.utexas.edu.

1



based on scaling [G85b, GT89, G95] and fast matrix multiplication [S95, GM97, AGM97, Tak98, SZ99, Z02]
have running times which depend on the magnitude of the integer edge weights, and therefore yield improved
algorithms only for suÆciently small edge weights. In the case of the matrix multiplication based algorithms
the critical threshold is rather low: even edge weights sublinear in n can be too large. Dijkstra's algorithm
can be sped up in the integer weight model by using an integer-sorting algorithm, and if necessary, Thorup's
reduction [Tho00] from monotone priority queues to sorting. The best bounds on integer sorting depend
on a number of factors, including whether randomization, superlinear space, and multiplication or other
non-AC0 operations are allowed. For the case of RAMs restricted to AC0 operations, Dijkstra's algorithm
can be implemented in O(m+n(logn)

1
3+�) time [Ram96, Ram97], or in O(m log logn) time [A+98, Tho00],

which is better for sparse graphs. Other algorithms can improve these bounds when the maximum edge
weight is not too large [Ram97, CGS99, vEB+76] or if unit-time multiplication is assumed [HT02]. Thorup
[Tho99] considered the restricted case of integer-weighted undirected graphs and showed that on an AC0

RAM, shortest paths could be computed in linear time. Thorup invented what we call in this paper the
hierarchy-based approach to shortest paths.

The techniques developed for integer-weighted graphs (scaling, integer matrix multiplication, integer
sorting, and Thorup's hierarchy-based approach) seem to depend crucially on the graph being integer-
weighted. This state of a�airs is not unique to the shortest path problem. In the weighted matching
[G85b, GT89] and maximum 
ow problems [GR98], for instance, the best algorithms for real and integer-
weighted graphs have running times di�ering by up to a polynomial factor. Therefore, it is of great interest
whether an integer-based approach is inherently so, or whether it can yield a faster algorithm for general,
real-weighted inputs. In this paper we generalize Thorup's hierarchy-based approach to the comparison-
addition model (see Section 2.1), and as a corollary, to real-weighted input graphs. One immediate result is
a faster undirected shortest path algorithm. However, we are also optimistic that our techniques could be
useful in narrowing the integer/real gap in other optimization problems. Before stating our results we give
an overview of the hierarchy-based approach and discuss the recent hierarchy-based shortest path algorithms
[Tho99, Hag00, Pet02a, Pet02b].

Hierarchy-based algorithms should be thought of as preprocessing schemes for answering SSSP queries in
non-negatively weighted graphs. The idea is to compute a small, non-source-speci�c structure that can be
used to compute single-source shortest paths eÆciently, for any given source. We measure the running time
of a hierarchy-based algorithm with two quantities: P , the worst case preprocessing cost on the given graph,
and M, the marginal cost of one SSSP computation after preprocessing. Therefore, solving the s-sources
shortest path problem requires s � M + P time. If s = n, that is, we are solving APSP, then for all known
hierarchy algorithms the P term becomes negligible. However, the P term may be dominant (in either the
asymptotic or real-world sense) for smaller values of s. In Thorup's original algorithm [Tho99] P andM are
both O(m); recall that his algorithmworks on integer-weighted undirected graphs. Hagerup [Hag00] adapted
Thorup's algorithm to integer-weighted directed graphs, incurring a slight loss of eÆciency in the process.
In [Hag00], P = O(minfm log logC;m logng)1, where C is the maximum edge weight, and M = O(m +
n log logn). If we isolate our attention to the marginal complexityM, one can see that Hagerup's algorithm
improves on the best SSSP algorithms for integer weighted graphs [A+98, Tho00, Ram96, Ram97]. After
the initial publication of our results [PR02a], Pettie [Pet02a, Pet02b] gave an adaptation of the hierarchy-
based approach to real-weighted directed graphs. The main result of [Pet02a] is an APSP algorithm running
in time O(mn + n2 log logn), which improved upon the O(mn + n2 logn) bound derived from multiple
runs of Dijkstra's algorithm [Dij59, J77, FT87]. (The result of [Pet02a] is stated in terms of the APSP
problem because its preprocessing cost P is O(mn), making it eÆcient only if s is very close to n.) In
[Pet02b] the non-uniform complexity of APSP is considered; the main result of [PR02b] is an algorithm
performing O(mn log�(m;n)) comparison and addition operations, where � is the incomprehensibly slow-
growing inverse-Ackermann function. The bound of [Pet02b] is essentially optimal when m = O(n) due to
the trivial 
(n2) lower bound on APSP.

In this paper we give new bounds on computing undirected shortest paths in real-weighted graphs. For
our algorithm, the preprocessing cost P is O(mst(m;n) + minfn logn; n log log rg), where mst(m;n) is
the complexity of the minimum spanning tree problem2 and r is the ratio of the maximum-to-minimum

1Hagerup actually proved it P = O(minfm log logC;mng); see [Pet02a] for the O(m log n) bound.
2One should interpret mst(m;n) as either the complexity of the optimal MST algorithm of Pettie and Ramachandran

[PR02a], whose running time is between linear and O(m�(m; n)) [Chaz00], or as the randomized complexity of the MST
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edge weight. This bound on P is never worse than O(m + n logn), though if r is not excessively large,

say less than n(logn)
O(1)

, P is O(m + n log logn). We show that the marginal cost M of our algorithm is
asymptotically equivalent to split-findmin(m;n), which is the decision-tree complexity of a certain data
structuring problem of the same name. It was known that split-findmin(m;n) = O(m�(m;n)) [G85]; we
improve this bound to O(m log�(m;n)). Therefore, the marginal cost of our algorithm is essentially (but
perhaps not precisely) linear. Theorem 1.1 gives our general result and Corollaries 1.1 and 1.2 relate it to
the canonical APSP and SSSP problems, respectively.

Theorem 1.1 Let P = mst(m;n) + minfn logn; n log log rg, where m and n are the number of edges and
vertices, r bounds the ratio of any two edge lengths, and mst(m;n) is the cost of computing the graph's
minimum spanning tree. In �(P) time a �(n)-space structure can be built which allows us to compute
undirected single-source shortest paths on the real-weighted graph in �(split-findmin(m;n)) time, where
split-findmin(m;n) = O(m log�(m;n)) represents the decision-tree complexity of the split-�ndmin problem
and � is the inverse-Ackermann function.

Corollary 1.1 The undirected all-pairs shortest paths problem can be solved on a real-weighted graph in
�(n � split-findmin(m;n)) = O(mn log�(m;n)) time.

Corollary 1.2 The undirected single source shortest path problem can be solved on a real-weighted graph
in �(split-findmin(m;n)+mst(m;n)+minfn logn; n log log rg) = O(m�(m;n)+minfn logn; n log log rg)
time.

The running time of our SSSP algorithm (Corollary 1.2) is rather unusual. It consists of three terms,
where the �rst two are unknown (but bounded by O(m�(m;n))) and the third depends on a non-standard
parameter: the maximum ratio of any two edge lengths. A natural question is whether our SSSP algo-
rithm can be substantially improved. In Section 6 we formally de�ne the class of \hierarchy-based" SSSP
algorithms and show that any comparison-based undirected SSSP algorithm in this class must take time

(m + minfn logn; n log log rg). This implies that our SSSP algorithm is optimal for this class, up to an
inverse-Ackermann factor, and that no hierarchy-based SSSP algorithm can improve on Dijkstra's algorithm
(for r unbounded).

Pettie et al. [PRS02] implemented a simpli�ed version of our algorithm. The marginal cost of the [PRS02]
implementation is nearly linear, which is in line with our asymptotic analysis. Although it is a little slower
than Dijkstra's algorithm in solving SSSP, it is faster in solving the s-sources shortest path problem, in some
cases for s as small as 3. In many practical situations it is the s-sources problem, not SSSP, that needs to be
solved. For instance, if the graph represents a physical network, such as a network of roads or computers, it
is unlikely to change very often. Therefore, in these situations a nearly linear preprocessing cost is a small
price to pay for more eÆcient shortest path computations.

1.1 An Overview

In Section 2 we de�ne the SSSP and APSP problems and review the comparison-addition model and Dijk-
stra's algorithm [Dij59]. In Section 3 we generalize the hierarchy approach to real-weighted graphs and give
a simple proof of its correctness. In Section 4 we propose two implementations of the general hierarchy-based
algorithm, one for proving the asymptotic bounds of Theorem 1.1 and one which should be better in practice.
The running times of our implementations depend heavily on having a well balanced hierarchy. In Section
5 we give an eÆcient method for constructing balanced hierarchies; it is based on a hierarchical clustering
of the graph's minimum spanning tree. In Section 6 we prove a lower bound on the class of hierarchy-based
undirected SSSP algorithms. In Section 7 we discuss avenues for further research.

2 Preliminaries

The input is a weighted, undirected graph G = (V;E; `) where V = V (G) and E = E(G) are the sets of n
vertices and m edges, resp., and ` : E ! R assigns a real length to each edge. Since, in an undirected graph,

problem, which is known to be linear [KKT95, PR02c].
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the existence of a negative-length edge creates a negative-length cycle, we assume that ` : E ! R
+ assigns

only positive weights. We let d(u; v) denote the distance from u to v, that is, the length of the shortest path
from u to v. We may replace v by a subgraph, in which case d(u; v) represents the distance from u to any
vertex in the subgraph of v. The single-source shortest paths problem is to compute d(u; �), where the source
u is �xed, and the all-pairs shortest path problem is to compute d(u; v) for all vertex pairs (u; v).

2.1 The Comparison-Addition Model

We use the term comparison-addition model to mean any uniform model in which real numbers are only
subject to comparison and addition operations. The term comparison-addition complexity refers to the
number of comparison and addition operations, ignoring other computational costs. In the comparison-
addition model we leave unspeci�ed the machine model used for all data structuring tasks. Our results
as stated hold when that machine model is a RAM. If instead we assume a pointer machine [Tar79], our
algorithms slow down by at most an inverse-Ackermann factor. The only structure we use whose complexity
changes between the RAM and pointer machine models is the split-�ndmin structure. On a pointer machine
there are matching upper and lower bounds of �(m�) [G85, L96], whereas on the RAM the complexity is
somewhere between 
(m) and O(m log�) | see Appendix B.

In our algorithm we sometimes use subtraction on real numbers, an operation which is not directly
available in the comparison-addition model. Lemma 2.1, given below, shows that simulating subtraction
incurs at most a constant factor loss in eÆciency.

Lemma 2.1 C comparisons and A additions and subtractions can be simulated in the comparison-addition
model with C comparisons and 2(A+ C) additions.

Proof: We represent each real xi = ai� bi as two reals ai; bi. An addition xi+xj = (ai+aj)� (bi+ bj) or a
subtraction xi�xj = (ai+ bj)� (bi+aj) can be simulated with two actual additions. A comparison xi : xj
is equivalent to the comparison ai + bj : bi + aj , which involves two actual additions and a comparison.

2

At a key point in our algorithm we need to approximate the ratio of two numbers. Division is clearly
not available for real numbers in the comparison-addition model, and with a little thought one can see that
it cannot be simulated exactly. Lemma 2.2, given below, bounds the time to �nd certain approximate ratios
in the comparison-addition model, which will be suÆcient for our purposes.

Lemma 2.2 Let p1; : : : ; pk be real numbers, and suppose that p1 and pk are known to be the smallest and
largest, respectively. We can �nd the set of integers fqig such that 2qi �

pi
p1
< 2qi+1 in �(log pk

p1
+k log log pk

p1
)

time.

Proof: We generate the set L = fp1; 2 � p1; 4 � p1; : : : ; 2
dlog

pk
p1
e � p1g with log pk

p1
additions, then for each pi

we �nd qi in log jLj = O(log log pk
p1
) time with a binary search over L.

2

In our algorithm the fpig correspond to certain edge lengths, and k = �(n). Our need to approximate
ratios, as in Lemma 2.2, is the source of the peculiar n log log r term in the running time of Theorem 1.1. We
note here that the bound stated in Lemma 2.2 is pessimistic in the following sense. If we randomly select the
fpig from a uniform distribution over some interval (or a Poisson or normal distribution), then the time to
�nd approximate ratios can be reduced to O(k) (w.h.p.) using a linear search rather than a binary search.

There are many lower bounds for shortest paths problems in the comparison-addition model though
none are truly startling. Spira and Pan [SP75] showed that even if additions are free, 
(n2) comparisons
are necessary to solve SSSP on the complete graph. Karger et al. [KKP93] proved that directed all-pairs
shortest paths requires 
(mn) comparisons if each summation corresponds to a path in the graph.3 Kerr
[K70] showed that any oblivious APSP algorithm performs 
(n3) comparisons, and Kolliopoulos and Stein
[KS98] proved that any �xed sequence of edge relaxations solving SSSP must have length 
(mn). By \�xed
sequence" they mean one which depends only on m and n but not on the graph structure. Ahuja et al.
[AM+90] observed that any implementation of Dijkstra's algorithm requires 
(m+ n logn) comparison and

3However it is not true that all shortest path algorithms satisfy this condition. For example, our algorithm does not and
neither do [F76, Tak92, Pet02a, Pet02b].
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addition operations. Pettie [Pet02a] gave an 
(m+minfn log r; n logng) lower bound on computing directed
SSSP with a \hierarchy-type" algorithm, where r bounds the ratio of any two edge lengths. In Section 6 we
prove a lower bound of 
(m + minfn log log r; n logng) on hierarchy-type algorithms for undirected SSSP.
These last two lower bounds are essentially tight for hierarchy-type algorithms, on directed and undirected
graphs respectively.

Graham et al. [GYY80] proved that the information-theoretic argument cannot prove a non-trivial
!(n2) lower bound on the comparison-complexity of APSP, where additions are granted for free. In many
reasonable models, however, additions are not free. The [GYY80] result does not rule out a lower bound of
an information-theoretic 
avor on the comparison-addition complexity of APSP. One can also see that no
information theoretic argument can lower bound the comparison-complexity of SSSP.

2.2 Dijkstra's Algorithm

Our algorithm, and indeed all hierarchy-based shortest path algorithms, are best understood as circumventing
the limitations of Dijkstra's algorithm. We give a brief description of Dijkstra's algorithm in order to
illustrate its inherent limitations; also, the vocabulary used in hierarchy-based algorithms is drawn mostly
from Dijkstra's algorithm.

For a vertex set S � V (G), let dS(u; v) denote the distance from u to v in the subgraph induced by
S [ fvg. Dijkstra's algorithm maintains a tentative distance function D(v) and a set of visited vertices S
satisfying Invariant 2.1. Henceforth, s denotes the source vertex.

Invariant 2.1 Let s be the source vertex and v be an arbitrary vertex.

D(v) =

�
d(s; v) if v 2 S
dS(s; v) if v 62 S

Choosing S = ;, D(s) = 0 and D(v) = 1 for v 6= s clearly satis�es the Invariant initially. Dijkstra's
algorithm consists of repeating the following step n times: choose a vertex v 2 V (G) � S such that D(v)
is minimized; let S := S [ fvg; �nally, update tentative distances to restore Invariant 2.1. This last part
involves relaxing each edge (v; w) by setting D(w) = minfD(w); D(v) + `(v; w)g. Invariant 2.1 and the
positive-weight assumption implies D(v) = d(s; v) when v is selected. It is also simple to prove that relaxing
outgoing edges of v restores Invariant 2.1.

The problem with Dijkstra's algorithm is that vertices are selected in increasing distance from the source,
a task which is at least as hard as sorting n numbers. Maintaining Invariant 2.1, however, does not demand
such a particular ordering. In fact, it can be seen that selecting any vertex v 62 S for which D(v) = d(s; v)
will maintain Invariant 2.1. All hierarchy-type algorithms [Tho99, Hag00, Pet02a, Pet02c] (and even a
heuristic algorithm [G01]) maintain Invariant 2.1 by generating a weaker certi�cate for D(v) = d(s; v)
than \D(v) is minimal." Any such certi�cate must show that for all u 62 S, D(u) + d(u; v) � D(v).
For example, Dijkstra's algorithm presumes there are no negative length edges, hence d(u; v) � 0, and
by choice of v ensures D(u) � D(v); this is clearly a suÆcient certi�cate. All hierarchy-type algorithms
[Tho99, Hag00, Pet02a, Pet02b], ours included, precompute an implicit lower bound on d(u; v) in order to
produce such certi�cates.

3 The Hierarchy Approach and Its Correctness

In this section we generalize the hierarchy-based approach of [Tho99] to real-weighted graphs. Because the
algorithm follows directly from its proof of correctness, we will actually give a kind of correctness proof �rst.

Below, X � V (G) denotes any set of vertices and s always denotes the source vertex. Let I be a real
interval. The notation XI refers to the subset of X whose distance from the source lies in the interval I , i.e.,

XI = f v 2 X : d(s; v) 2 I g

De�nition 3.1 A vertex set X is (S; [a; b))-safe if
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(i) X [0;a) � S

(ii) For v 2 X [a;b); dS[X(s; v) = d(s; v)

In other words, if a subgraph is (S; I)-safe, we can determine the distances that lie in interval I without
looking at parts of the graph outside the subgraph and S. Clearly, �nding safe subgraphs has the potential
to let us compute distances cheaply.

De�nition 3.2 A t-partition of X is a set fXigi such that the fXigi partition X, and for any edge e =
(v1; v2), where v1 2 Xi, v2 2 Xj and i 6= j, `(e) � t.

Note that a t-partition need not be maximal, that is, if fX1; X2; : : : ; Xkg is a t-partition then fX1 [
X2; X3; : : : ; Xkg is as well.

Lemma 3.1 Suppose that X is (S; [a; b))-safe. Let fXigi be a t-partition of X and let S0 be such that
S [X [a;minfa+t;bg) � S0. Then

(i) For Xi in the t-partition, Xi is (S; [a;minfa+ t; bg))-safe

(ii) X is (S0; [minfa+ t; bg; b))-safe

Proof: We prove part (i) �rst. Let v 2 X
[a;minfa+t;bg)
i and suppose that the lemma is false, that d(s; v) 6=

dS[Xi(s; v). From the assumed safeness of X we know that d(s; v) = dS[X(s; v). This means that the
shortest path to v must pass through X � (Xi [S). Let w be the last vertex in X � (Xi [S) on the shortest
s{v path. By De�nition 3.2, the edge from w to Xi has length � t. Since d(s; v) < minfa+ t; bg, d(s; w) <
minfa+ t; bg� t � a. Since, by De�nition 3.1(i), X [0;a) 2 S, it must be that w 2 S, which is a contradiction
because we speci�cally selected w from X � (Xi [S). Part (ii) claims that X is (S0; [minfa+ t; bg; b))-safe.
Consider �rst De�nition 3.1(i) regarding safeness. By the assumption that X is (S; [a; b))-safe we have
X [0;a) � S, and by de�nition of S0 we have S [X [a;minfa+t;bg) � S0, therefore X [0;minfa+t;bg) � S0, satisfying
De�nition 3.1(i). De�nition 3.1(ii) is easily satis�ed. By the assumption that X is (S; [a; b))-safe we have
that for v 2 X [a;b), dS[X(s; v) = d(s; v); this implies the weaker statement that for v 2 X [minfa+t;bg;b),
dS0[X(s; v) = dS[X(s; v) = d(s; v).

2

As Thorup noted [Tho99], Lemma 3.1 alone leads to a simple recursive procedure for computing SSSP;
however it makes no guarantee as to eÆciency. The input to the procedure is an (S; I)-safe subgraph X ; its
only task is to compute the set XI , which it performs with recursive calls (corresponding to Lemma 3.1 (i)
and (ii)) or directly if X consists of a single vertex. There are essentially three major obstacles to making this
general algorithm eÆcient: bounding the number of recursive calls, bounding the time to decide what those
recursive calls are, and computing good t-partitions. Thorup gave a simple way to choose the t-partitions in
integer-weighted graphs so that the number of recursive calls is O(n). However, if adapted directly to the
comparison-addition model, the time to decide which calls to make becomes 
(n logn); it amounts to the
problem of implementing a general priority queue. We reduce the overhead for deciding which recursive calls
to make to linear by using a \well balanced" hierarchy and a specialized priority queue for exploiting this
kind of balance. Our techniques rely heavily on the graph being undirected and do not seem to generalize
to directed graphs in any way.

As in other hierarchy-type algorithms [Tho99, Hag00, Pet02a, Pet02b], we generalize the distance and
tentative distance notation from Dijkstra's algorithm to include not just single vertices but sets of vertices.
If X is a set of vertices (or associated with a set of vertices) then

D(X)
def
= min

v2X
D(v) and d(u;X)

def
= min

v2X
d(u; v) (1)

The procedure Generalized-Visit, given in Figure 1, takes a vertex set X which is (S; I)-safe and
computes the distances to all vertices in XI , placing these vertices in the set S as their distances become
known. We maintain Invariant 2.1 at all times. By De�nition 3.1 we can compute the set XI without looking
at parts of the graph outside of S [X . If X = fvg happens to contain a single vertex we can compute XI

directly: if D(v) 2 I then XI = fvg, otherwise it's ;. For the general case, Lemma 3.1 says that we can
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compute XI by �rst �nding a t-partition � of X , then computing XI in phases. Let I = I1 [ I2 [ : : : [ Ik,
where each subinterval is disjoint from the others and has width t, except perhaps Ik which may be a leftover
interval of width less than t. Let Si = S[XI1 [ : : :[XIi and let S0 = S. By the assumption that X is (S; I)-
safe and Lemma 3.1, each set in � is (Si; Ii+1)-safe. Therefore, we can compute S1; S2; : : : ; Sk = S [XI

with a series of recursive calls as follows. Assume that the current set of visited vertices is Si. We determine
XIi+1 =

S
Y 2� Y

Ii+1 with recursive calls of the form Generalized-Visit(Y; Ii+1), where Y 2 �. When

each recursive call completes, Y Ii+1 is part of the current set of visited vertices, so if we make one recursive
call for each Y 2 � such that Y Ii+1 6= ;, the resulting set of visited vertices will be Si+1 = Si [ XIi+1 , as
called for.

To start things o�, we initialize the set S to be empty, set the D-values (tentative distances) in accordance
with Invariant 2.1, and callGeneralized-Visit(V (G); [0;1)). By the de�nition of safeness, V (G) is clearly
(;; [0;1))-safe. If Generalized-Visit works according to speci�cation, when it completes S = V (G) and
Invariant 2.1 is satis�ed, implying that D(v) = d(s; v) for all vertices v 2 V (G).

Generalized-Visit(X; [a; b))

Input guarantee: X is (S; [a; b))-safe and Invariant 2.1 is satis�ed

Output guarantee: Invariant 2.1 is satis�ed and Spost = Spre [X [a;b), where Spre and Spost are the
set S before and after the call.

1. If X contains one vertex, X = fvg, and D(v) 2 [a; b), then D(v) = dS(s; v) = d(s; v), where the
�rst equality is by Invariant 2.1 and the second by the assumption that X is (S; [a; b))-safe. Let
S := S [ fvg. Relax all edges incident on v, restoring Invariant 2.1 and return.

2. Let a0 := a
While a0 < b and X 6� S

Let t > 0 be any positive real
Let � = fX1; X2; : : : ; Xkg be an arbitrary t-partition of X
Let �0 = fXi 2 � : D(Xi) < minfa0 + t; bg and Xi 6� Sg
For each Xi 2 �0, Generalized-Visit(Xi; [a

0;minfa0 + t; bg))
a0 := minfa0 + t; bg

Figure 1: A generalized hierarchy-type algorithm for real-weighted graphs

Lemma 3.2 If the input guarantees of Generalized-Visit are met, then after a call to Generalized-

Visit(X; I), Invariant 2.1 remains satis�ed and XI is a subset of the visited vertices S.

Proof Sketch: The base case, when X is a single vertex, is simple to handle. Turning to the general
case, we prove that each time the while statement is examined in Step 2, X is (S; [a0; b)) safe for the
current value of S and a0; in what follows we will treat S as a variable, not a speci�c vertex set. The �rst
time through the while-loop in Step 2, it follows from the input guarantee to Generalized-Visit that
X is (S; [a0; b))-safe. Similarly, the input guarantee for all recursive calls holds by Lemma 3.1. However,
to show that X is (S; [a0; b))-safe at the assignment a0 := minfa0 + t; bg, by De�nition 3.1 we must show
X [0;minfa0+t;bg) � S. We assume inductively that the output guarantee of any recursive call toGeneralized-
Visit is full�lled, that is, upon the completion of Generalized-Visit(Xi; [a

0;minfa0 + t; bg)), S includes

the set X
[a0;minfa0+t;bg)
i . Each time through the while-loop in Step 2 Generalized-Visit makes recursive

calls to all Y 2 �0. To complete the proof we must show that for Y 2 (� � �0), Y [a0;minfa0+t;bg) � S = ;.
If Y 2 (� � �0) it was because D(Y ) � minfa0 + t; bg or because Y � S, both of which clearly imply
Y [a0;minfa0+t;bg) � S = ;. The output guarantee for Generalized-Visit is clearly satis�ed if Step 1 is
executed; if Step 2 is executed, then when the while loop �nishes X is either (S; [b; b))-safe or X � S, both
implying X [0;b) 2 S.

2
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Generalized-Visit can be simpli�ed in a few minor ways. It can be seen that in Step 1 we do not need
to check whether D(v) 2 [a; b); the recursive call would not have taken place were this not the case. In Step
2 the �nal line can be shortened to a0 := a0 + t. However, we cannot change all occurrences of minfa0+ t; bg
to a0 + t because this is crucial to the procedure's correctness. It is not assumed (nor can it be guaranteed)
that t divides (b� a) so the procedure must be prepared to deal with fractional intervals of width less than
t. In Section 4 we show that for a proper hierarchy this fractional interval problem does not arise.

4 EÆcient Implementations of Generalized-Visit

We propose two implementations of the Generalized-Visit algorithm, called Visit-A and Visit-B. The
time bound claimed in Theorem 1.1 is proved by analyzing Visit-A, given later in this section. Although
Visit-A is asymptotically fast it seems too impractical for a real-world implementation. In Section 4.5 we
give the Visit-B implementation of Generalized-Visit which is simpler than Visit-A and uses fewer
specialized data structures. The asymptotic running time of Visit-B is just a little slower than that of
Visit-A.

Visit-A and Visit-B di�er from Generalized-Visit in their input/output speci�cation only slightly.
Rather than accepting a set of vertices, as Generalized-Visit does, our implementations (like [Tho99,
Hag00, Pet02a, Pet02b]) accept a hierarchy node x, which represents a set of vertices. Both of our imple-
mentations work correctly for any proper hierarchy H, de�ned below. We prove bounds on their running
times as a function ofm;n, and a certain function of H (which is di�erent for Visit-A and Visit-B). In order
to compute SSSP in near-linear time the proper hierarchy H must in addition satisfy certain balance condi-
tions, which are the same for Visit-A and Visit-B. In section 5 we give the requisite properties of a balanced
hierarchy and show how to construct a balanced proper hierarchy in O(mst(m;n)+minfn logn; n log log rg)
time. De�nition 4.1, given below, describes exactly what is meant by hierarchy and proper hierarchy.

De�nition 4.1 A hierarchy is a rooted tree whose leaf nodes correspond to graph vertices. If x is a hierarchy
node, p(x) is its parent, deg(x) is the number of children of x, V (x) is the set of descendant leaves (or the
equivalent graph vertices), and diam(x) is an upper bound on the diameter of V (x) (where the diameter of
V (x) is de�ned to be maxu;v2V (x) d(u; v)). Each node x is given a value norm(x). A hierarchy is proper if
the following hold:

1. norm(x) � norm(p(x))

2. Either norm(p(x))=norm(x) is an integer or diam(x) < norm(p(x))

3. deg(x) 6= 1

4. If x1; : : : ; xdeg(x) are the children of x, then fV (xi)gi is a norm(x)-partition of V (x). (Refer to
De�nition 3.2 for the meaning of \norm(x)-partition.")

Part (4) of De�nition 4.1 is the crucial one for computing shortest paths. Part (3) guarantees that a
proper hierarchy has O(n) nodes. The second part of Part (2) is admittedly a little strange. It allows us to
replace all occurances of minfa + t; bg in Generalized-Visit with just a + t, which greatly simpli�es the
analysis of our algorithms. Part (1) will be useful when bounding the total number of recursive calls to our
algorithms.

4.1 Visit-A

We now consider the Visit-A procedure in Figure 2. Visit-A is clearly very similar Generalized-Visit;
indeed, the base cases of the two procedures (Step 1) are the same. Since Generalized-Visit is already
proved correct, we only need to show that Visit-A implements the Generalized-Visit procedure. In Step
2 of Generalized-Visit we let � be any arbitrary t-partition of the subset of vertices given as input. In
Visit-A the input is a hierarchy node x and the associated vertex set is V (x). We represent the t-partition
of V (x) (where t = norm(x)) by the set of bucketed H-nodes fxigi (see Step 2), where the sets fV (xi)gi
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Visit-A(x; [a; b))

Input: x is a node in a proper hierarchy H; V (x) is (S; [a; b))-safe and Invariant 2.1 is satis�ed

Output guarantee: Invariant 2.1 is satis�ed and Spost = Spre [ V (x)[a;b), where Spre and Spost are
the set S before and after the call.

1. If x is a leaf and D(x) 2 [a; b), then let S := S [ fxg, relax all edges incident on x, restoring Invariant
2.1, and return.

2. If Visit-A(x; �) is being called for the �rst time, create a bucket array of ddiam(x)=norm(x)e + 1
buckets. Bucket i represents the interval

[ax + i � norm(x); ax + (i+ 1) � norm(x))

where ax =

(
D(x) if D(x) + diam(x) < b

b� d b�D(x)
norm(x)enorm(x) otherwise

We initialize a0 := ax and insert all the children of x in H into the bucket array.

The Bucket Invariant: A node y 2 H in x's bucket array appears (logically) in the bucket whose interval
spans D(y). If fxig are the set of bucketed nodes, then fV (xi)g is a norm(x)-partition of V (x).

3. While a0 < b and V (x) 6� S
While 9y in bucket [a0; a0 + norm(x)) such that norm(y) = norm(x)

Remove y from the bucket array
Insert y's children in H in the bucket array

For each y in bucket [a0; a0 + norm(x))
and each y such that D(y) < a0 and V (y) 6� S

Visit-A(y; [a0; a0 + norm(x)))
a0 := a0 + norm(x)

Figure 2: The Visit-A procedure.
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partition V (x). Clearly the fxigi are descendants of x. The set fxigi will begin as x's children though later
on fxigi may contain a mixture of children of x, grandchildren of x, and so on.

Consider the inner while-loop in Step 3. Assuming inductively that the bucketed H-nodes represent a
norm(x)-partition of V (x), if y is a bucketed node and norm(y) = norm(x) then replacing y by its children
in the bucket array produces a new norm(x)-partition. This follows from the de�nitions of t-partitions and
proper hierarchies (De�nitions 3.2 and 4.1). Since the bucketed nodes form a norm(x)-partition, one can
easily see that the recursive calls in Visit-A Step 3 correspond to the recursive calls in Generalized-Visit.
However, their interval arguments are di�erent. We sketch below why this change does not a�ect correctness.

In Generalized-Visit the intervals passed to recursive calls are of the form [a0;minfa0+ t; bg) whereas
in Visit-A they are [a0; a0+ t) = [a0; a0+norm(x)). We will argue why a0+ t = a0+norm(x) is never more
than b. The main idea is to show that we are always in one of the three cases portrayed in Figure 3.

D(x)ax b b + NORM(p(x))

xNORM(x) divides (b − a  ) NORM(x) divides NORM(p(x))

D(x)ax b b + NORM(p(x))

xNORM(x) divides (b − a  ) DIAM(x) < NORM(p(x))

D(x) + DIAM(x)

D(x) b b + NORM(p(x))
xa   =   D(x) + 

DIAM(x)

D(x) + DIAM(x)  <  b

Case 1:  Fully Aligned

Case 2:  Aligned With b

Case 3:  Not Aligned At All

a = b − NORM(p(x))

a = b − NORM(p(x))

a = b − NORM(p(x))

Figure 3: First observe that when ax is initialized we have D(x) � ax � a, as in the �gure. If ax is chosen
such that norm(x) divides (b � ax) then by De�nition 4.1(2) either norm(x) divides norm(p(x)) (which
puts us in Case 1) or diam(x) < norm(p(x)) (putting us in Case 2), that is, norm(x) does not divide
(b+norm(p(x))�ax) but it does not matter since we'll never reach b+norm(p(x)) anyway. If ax is chosen
so that norm(x) does not divide (b� ax) then ax = D(x) and D(x) + diam(x) < b (putting us in Case 3),
meaning we will never reach b. Note that by the de�nition of diam(x) (De�nition 4.1) and Invariant 2.1, for
any vertex in u 2 V (x) we have d(s; u) � d(s; x) + diam(x) � D(x) + diam(x).

If norm(x) divides norm(p(x)) and ax is chosen in Step 2 so that t = norm(x) divides (b�ax), then we
can freely substitute the interval [a0; a0 + t) for [a0;minfa0 + t; bg) since they will be identical. Note that in
our algorithm (b�a) = norm(p(x)).4 The problems arise when norm(x) does not divide either norm(p(x))
or (b� ax). In order to prove the correctness of Visit-A we must show that the input guarantee (regarding
safe-ness) is satis�ed for each recursive call. We consider two cases: when we are in the �rst recursive call
to Visit-A(x; �) and any subsequent call. Suppose we are in the �rst recursive call to Visit-A(x; �). By our
choice of ax in Step 2, either b = ax+q �norm(x) for some integer q, or b > D(x)+diam(x) = ax+diam(x).
If it is the �rst case, each time the outer while-loop is entered we have a0 < b, which, since q is integral,
implies minfa0 + norm(x); bg = a0 + norm(x). Now consider the second case, where b > D(x) + diam(x) =
ax + diam(x), and one of the recursive calls Visit-A(y; [a0; a0 + norm(x))) made in Step 3. By Lemma
3.1, V (y) is (S; [a0;minfa0 + norm(x); bg))-safe, and it is actually (S; [a0; a0 + norm(x)))-safe as well
because b > D(x) + diam(x), implying V (y)[b;1) � V (x)[b;1) = ;. (Recall from De�nition 4.1 that for any

4Strictly speaking this does not hold for the initial call because in this case, x = root(H) is the root of the hierarchy H
and there is no such node p(x). The argument goes through just �ne if we let p(root(H)) denote a dummy node such that
norm(p(root(H))) =1.
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u 2 V (x), diam(x) satis�es d(s; x) � d(s; u) � d(s; x) + diam(x) � D(x) + diam(x).) Now consider the
recursive call Visit-A(x; [a; b)) which is not the �rst call to Visit-A(x; �). Then by De�nition 4.1(2), either
(b � a) = norm(p(x)) is a multiple of norm(x) or a + diam(x) < b; these are identical to the two cases
treated above.

There are two data structural problems that need to be solved in order to eÆciently implement Visit-A.
First, we need a way to compute the tentative distances of hierarchy nodes, i.e., the D-values as de�ned in
Equation 1 in Section 3. For this problem we use an improved version of Gabow's split-�ndmin structure
[G85]. The other problem is eÆciently implementing the various bucket arrays, which we solve with a
new structure called the Bucket-Heap. The speci�cations for these two structures are discussed below, in
Sections 4.2 and 4.3, respectively. The interested reader can refer to Appendices A and B for details about
our implementations of split-�ndmin and the Bucket-Heap, and proofs of their respective complexities.

4.2 The Split-Findmin Structure

The split-�ndmin structure operates on a collection of disjoint sequences, consisting, in total, of n items with
associated keys. The idea is to maintain the smallest key in each sequence under the following operations.

split(x) Split the sequence containing x into two sequences: the
elements up to and including x and the rest.

decrease-key(x; �) Set key(x) = minfkey(x); �g
�ndmin(x) Return the element with minimum key in x's sequence.

Theorem 4.1, given below, establishes some new bounds on the problem which are just slightly better
than Gabow's original data structure [G85]. Refer to Appendix B for a proof. Thorup [Tho99] gave a similar
data structure for integer keys in the RAM model which runs in linear time. It relies on the RAM's ability
to sort small sets of integers in linear time [FW93].

Theorem 4.1 The split-�ndmin problem can be solved on a pointer machine in O(n+m�) time while making
only O(n+m log�) comparisons, where � = �(m;n) is the inverse-Ackermann function. Alternatively, split-
�ndmin can be solved on a RAM in time �(split-findmin(m;n)), where split-findmin(m;n) = O(n +
m log�) is the (randomized) decision-tree complexity of the problem.

We use the split-�ndmin structure to maintainD-values as follows. In the beginning there is one sequence
consisting of the n leaves of H in an order consistent with some depth-�rst search traversal of H. For any
leaf v in H we maintain, by appropriate decrease-key operations, that key(v) = D(v). During execution
of Visit-A we will say an H-node is unresolved if it lies in another node's bucket array but its tentative
distance (D-value) is not yet �nalized. The D-value of an H-node becomes �nalized, in the sense that
it never decreases again, during Step 3 of Visit-A, either by being removed from some bucket array or
passed, for the �rst time, to a recursive call of Visit-A. (It follows from De�nition 3.1 and Invariant 2.1 that
D(y) = d(s; y) at the �rst recursive call to y.) One can verify a couple properties of the unresolved nodes.
First, each unvisited leaf has exactly one unresolved ancestor. Second, to implement Visit-A we need only
query the D-values of unresolved nodes. Therefore, we maintain that for each unresolved node y, there is
some sequence in the split-�ndmin structure corresponding to V (y), the descendants of y. Now suppose that
a previously unresolved node y is resolved in Step 3 of Visit-A. The deg(y) children of y will immediately
become unresolved, so to maintain our correspondence between sequences and unresolved nodes, we perform
deg(y)� 1 split operations on y's sequence so that the resulting subsequences correspond to y's children.

We remark that the split-�ndmin structure we use can be simpli�ed slightly because we know in advance
where the splits will occur. However, this knowledge does not seem to a�ect the asymptotic complexity of
the problem. See Appendix B.

4.3 The Bucket-Heap

We now turn to the problem of eÆciently implementing the bucket array used in Visit-A. Because of the
information-theoretic bottleneck built into the comparison-additionmodel, we cannot always bucket nodes in
constant time; each comparison extracts at most one bit of information, whereas properly bucketing a node in
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x's bucket array requires us to extract up to log(diam(x)=norm(x)) bits of information. Thorup [Tho99] and
Hagerup [Hag00] assume integer edge lengths and the RAM model and therefore do not face this limitation.
We now give the speci�cation for the Bucket-Heap, a structure which supports the bucketing operations of
Visit-A. This structure logically operates on a sequence of buckets; however, our implementation is actually
a simulation of the logical structure. Lemma 4.1, proved in Appendix A, bounds the complexity of our
implementation of the Bucket-Heap.

create(�; Æ) Create a new Bucket-Heap whose buckets are associated
with intervals [Æ; Æ + �); [Æ + �; Æ + 2�); [Æ + 2�; Æ + 3�); : : :
An item x lies in the bucket whose interval spans key(x).
All buckets are initially open.

insert(x; �) Insert a new item x with key(x) = �.
decrease-key(x; �) Set key(x) = minfkey(x); �g. It is guaranteed that x is

not moved to a closed bucket.
enumerate Close the �rst open bucket and enumerate its contents.

Lemma 4.1 Let �x denote the number of buckets between the �rst open bucket at the time of x's insertion
and the bucket from which x was enumerated. The Bucket-Heap can be implemented on a pointer machine to
run in O(m+ n+ b+

P
x log(�x +1)) time, where n;m, and b are the number of insertions, decrease-keys,

and enumerates, respectively.

WhenVisit-A(x; �) is called for the �rst time, we initialize the Bucket-Heap at x with a call to create(norm(x); ax),
followed by a number of insert operations for each of x's children, where the key of a child is its D-value.
Here ax is the beginning of the real interval represented by the bucket array, and norm(x) the width of each
bucket. Every time the D-value of a bucketed node decreases, which can easily be detected with the split-
�ndmin structure, we perform a decrease-key on the corresponding item in the Bucket-Heap. We usually refer
to buckets not by their cardinal number but by their associated real interval, e.g. bucket [ax; ax+norm(x)).

4.4 Analysis of Visit-A

In this section we bound the time required to compute SSSP with Visit-A as a function of m, n, and
the given hierarchy H. We will see later that the dominant term in this running time corresponds to the
split-�ndmin structure, whose complexity is no more than O(m log�) but could turn out to be linear.

Lemma 4.2 Let H be a proper hierarchy. Computing single-source shortest paths with Visit-A on H
takes time O(split-findmin(m;n)+�(H)) where split-findmin(m;n) is the complexity of the split-�ndmin
problem and

�(H) =
X

x2H such that

norm(x) 6= norm(p(x))

diam(x)

norm(x)
+

X
x2H

log
�
diam(p(x))

norm(p(x))
+ 1
�

Proof: The split-findmin(m;n) term represents the time to relax edges (in Step 1) and update the relevant
D-values of H-nodes, as described in Section 4.2. Except for the costs associated with updating D-values,
the overall time of Visit-A is linear in the number of recursive calls and the bucketing costs. The two terms
of �(H) represent these costs. Consider the number of calls to Visit-A(x; I) for a particular H-node x.
According to Step 3 of Visit-A there will be zero calls to x unless norm(x) 6= norm(p(x)). If it is the case
that norm(x) 6= norm(p(x)), then for all recursive calls on x, the given interval I will have the same width:
norm(z) for some ancestor z of x. By De�nition 4.1(1) norm(z) � norm(x), therefore the number of such
recursive calls on x is � diam(x)=norm(x) + 2; the extra 2 counts the �rst and last recursive calls, which
may cover negligible parts of the interval [d(s; x); d(s; x)+diam(x)]. By De�nition 4.1(3), jHj < 2n therefore
the total number of recursive calls is bounded by 4n+

P
x diam(x)=norm(x), where the summation is over

H-nodes whose norm-values di�er from their parents norm-values.
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Now consider the bucketing costs of Visit-A if implemented with the Bucket-Heap. According to Steps
2 and 3, a node y is bucketed either because Visit-A(p(y); �) was called for the �rst time, or its parent p(y)
was removed from the �rst open bucket (of some bucket array), say bucket [a; a + norm(p(y))). In either
case, this means that d(s; p(y)) 2 [a; a+norm(p(y))) and that d(s; y) 2 [a; a+norm(p(y))+diam(p(y))). To
use the terminology of Lemma 4.1, �y � ddiam(p(y))=norm(p(y))e and the total bucketing costs would be
#(buckets scanned)+#(insertions)+#(dec-keys)+

P
x log(diam(p(x))=norm(p(x))+1), which is O(�(H)+

m+ n).
2

In Section 5 we give a method for constructing a proper hierarchy H such that �(H) = O(n). This
bound together with Lemma 4.2 shows that we can compute SSSP in O(split-findmin(m;n)) time, given
a suitable hierarchy. Asymptotically speaking, this bound is the best we are able to achieve. However, the
promising experimental results of a simpli�ed version of our algorithm [PRS02] have led us to design an
alternate implementation of Generalized-Visit that is both theoretically fast and easier to code.

4.5 A Practical Implementation of Generalized-Visit

In this Section we present another implementation of Generalized-Visit called Visit-B. Although Visit-
B is a bit slower than Visit-A in the asymptotic sense, it has other advantages. Unlike Visit-A, Visit-B
treats all internal hierarchy nodes in the same way and is generally more streamlined. Visit-B also works
with any optimal o�-the-shelf priority queue, such as a Fibonacci heap [FT87], unlike Visit-A, which relies
on the somewhat specialized Bucket-Heap. We will prove later that the asymptotic running time of Visit-B
is O(m + nlog�n). Therefore, if m=n = 
(log�n), both Visit-A and Visit-B run in optimal O(m) time.

The pseudocode for Visit-B is given in Figure 4.

Visit-B(x; [a; b))

Input: x is a node in a proper hierarchy H; V (x) is (S; [a; b))-safe and Invariant 2.1 is satis�ed

Output guarantee: Invariant 2.1 is satis�ed and Spost = Spre [ V (x)[a;b), where Spre and Spost are
the set S before and after the call.

1. If x is a leaf and D(x) 2 [a; b), then let S := S [ fxg, relax all edges incident on x, restoring Invariant
2.1, and return.

2. If Visit-B(x; �) is being called for the �rst time, put x's children in H in a heap associated with x,
where the key of a node is its D-value. Choose ax as in Visit-A and initialize a0 := ax and � := ;.

3. While a0 < b and either � or x's heap is non-empty,
While there exists a y in x's heap with D(y) 2 [a0; a0 + norm(x))

Remove y from the heap
� := � [ fyg

For each y 2 �,
Visit-B(y; [a0; a0 + norm(x)))
If V (y) � S then set � := �� fyg.

a0 := a0 + norm(x)

Figure 4: The Visit-B procedure.

The proof of correctness for Visit-B follows the same lines as Visit-A. It is easy to establish that before
the for-loop in Step 3 is executed, � = fy : p(y) = x;D(y) < a0 + norm(x); and V (y) 6� Sg, so Visit-
B is actually a more straightforward implementation of Generalized-Visit than Visit-A. In Visit-B

the norm(x)-partition for x corresponds to x's children, whereas in Visit-A the partition begins with x's
children but is decomposed progressively.
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Lemma 4.3 Let H be a proper hierarchy. Computing single-source shortest paths with Visit-B on H takes
time O(split-findmin(m;n) +  (H)) where split-findmin(m;n) is the complexity of the split-�ndmin
problem and

 (H) =
X
x2H

�
diam(x)

norm(x)
+ deg(x) logdeg(x)

�

Proof: The split-findmin term plays the same role in Visit-B as in Visit-A. Visit-B is di�erent than
Visit-A in that it makes recursive calls on all hierarchy nodes, not just those with di�erent norm-values
than their parents. Using the same argument as in Lemma 4.3 we can bound the number of recursive calls
of the form Visit-B(x; �) as diam(x)=norm(x) + 2; this gives the �rst summation in  (H). Assuming an
optimal heap is used (for example, a Fibonacci heap [FT87]), all decrease-keys take O(m) time and all
deletions take

P
x deg(x) logdeg(x) time. The bound on deletions follows since each of the deg(x) children

of x are inserted into and deleted from x's heap at most once.
2

In Section 5 we construct a hierarchy H such that  (H) = �(nlog�n), implying an overall bound on
Visit-B of O(m + nlog�n), since split-findmin(m;n) = O(m�(m;n)) = O(m + nlog�n). Even though
 (H) = 
(nlog�n) in the worst case, we are only able to construct very contrived graphs for which this lower
bound is tight.

5 EÆcient Construction of Balanced Hierarchies

In this section we construct a hierarchy that works well for both Visit-A and Visit-B. The construction
procedure has three distinct phases. In Phase 1 we �nd the graph's minimum spanning tree, denoted M ,
and classify its edges by length. This classi�cation immediately induces a coarse hierarchy, denoted H0,
which is analogous to Thorup's [Tho99] \component hierarchy", which was de�ned for integer-weighted
graphs. Although H0 is proper, using it to run Visit-A or Visit-B may result in a slow SSSP algorithm.
In particular, �(H0) and  (H0) can easily be �(n logn), giving no improvement over Dijkstra's algorithm.
Phase 2 facilitates Phase 3, in which we produce a re�nement of H0, called H; this is the \well balanced"
hierarchy we referred to earlier. The re�ned hierarchy H is constructed so as to minimize the �(H) and
 (H) terms in the running times of Visit-A and Visit-B. In particular, �(H) will be O(n) and  (H) will
be O(nlog�n). Although H could be constructed directly from M (the graph's minimum spanning tree) we
would not be able to prove the time bound of Theorem 1.1 using this method. The purpose of Phase 2 is
to generate a collection of small auxiliary graphs that | loosely speaking | capture the structure and edge
lengths of certain subtrees of the minimum spanning tree. Using the auxiliary graphs in lieu of M , we are
able to construct H in Phase 3 in O(n) time.

In Section 5.1 we de�ne all the notation and properties used in Phases 1, 2, and 3 (Sections 5.2, 5.3, and
5.4, respectively). In Section 5.5 we prove that �(H) = O(n) and  (H) = O(nlog�n).

5.1 Some De�nitions and Properties

5.1.1 The Coarse Hierarchy

Our re�ned hierarchy H is derived from a coarse hierarchy H0, which is de�ned here and in Section 5.2.
Although H0 is typically very simple to describe, the general de�nition of H0 is rather complicated since
it must take into account certain extreme circumstances. Therefore, for this section we give an abstract
de�nition of H0. H0 is de�ned with respect to an increasing sequence of norm-values: norm1;norm2; : : :,
where all edge lengths are at least as large as norm1. (Typically normi+1 = 2 � normi; however, this is
not true in general.) We will say an edge e is at level i if `(e) 2 [normi;normi+1), or alternatively, we
may write norm(e) = normi to express that e is at level i. A level i subgraph is a maximal connected
subgraph restricted to edges with level i or less, that is, with length strictly less than normi+1. Therefore,
the level zero subgraphs consist of single vertices. A level i node in H0 corresponds to a non-redundant level
i subgraph, where a level i subgraph is redundant if it is also a level i� 1 subgraph. This non-redundancy
property guarantees that all non-leaf H0-nodes have at least two children. The ancestor relationship in
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H0 should be clear: x is an ancestor of y if and only if the subgraph of y is contained in the subgraph
of x, i.e. V (y) � V (x). The leaves of H0 naturally correspond to graph vertices and the internal nodes
to subgraphs. The coarse hierarchy H0 clearly satis�es De�nition 4.1(Parts 1,3,4); however, we have to be
careful in choosing the norm-values if we want it to be a proper hierarchy, that is, for it to satisfy De�nition
4.1(2) as well. Our method for choosing the norm-values is deferred to Section 5.2.

5.1.2 The Minimum Spanning Tree

By the cut property of minimum spanning trees (see [CLRS01, PR02a]) the H0 w.r.t. G is identical to the
H0 w.r.t. M , the minimum spanning tree of G. Therefore, the remainder of this section is mainly concerned
withM , not the graph itself. If X � V (G) is a set of vertices, we letM(X) be the minimal connected subtree
of M containing X . Notice that M(X) can include vertices outside of X . Later on we will need M to be a
rooted tree in order to talk coherently about a vertex's parent, ancestors, children, and so on. Assume that
M is rooted at an arbitrary vertex. The notation root(M(X)) refers to the root of the subtree M(X).

5.1.3 Mass and Diameter

The mass of a vertex set X � V (G) is de�ned as

mass(X)
def
=

X
e2E(M(X))

`(e)

Extending this notation, we let M(x) =M(V (x)) and mass(x) = mass(V (x)), where x is a node in any
hierarchy. Since the MST path between two vertices inM(x) is an upper bound on the shortest path between
them, mass(x) is an upper bound on the diameter of V (x). Recall from De�nition 4.1 that diam(x) denoted
any upper bound on the diameter of V (x); henceforth, we will freely substitute mass(x) for diam(x).

5.1.4 Re�nement of the Coarse Hierarchy

We will say H is a re�nement of H0 if all nodes in H0 are also represented in H. An equivalent de�nition,
which provides us with better imagery, is that H is derived from H0 by replacing each node x 2 H0 with
a rooted sub-hierarchy H(x), where the root of H(x) corresponds to (and is also referred to as) x and the
leaves of H(x) correspond to the children of x in H0. Consider a re�nement H of H0 where each internal
node y in H(x) satis�es deg(y) 6= 1 and norm(y) = norm(x). One can easily verify from De�nitions 3.2
and 4.1 that if H0 is a proper hierarchy, so too is H. Of course, in order for �(H) and  (H) to be linear
or near-linear H(x) must satisfy certain properties. In particular it must be suÆciently short and balanced.
By balanced we mean that a node's mass should not be too much smaller than its parent's mass.

5.1.5 Lambda Values

We will use the �-values, de�ned below, in order to quantify precisely our notion of balance.

�0 = 0; �1 = 12 and �q+1 = 2�q�2
�q

Lemma 5.1 gives a lower bound on the growth of the �-values; we give a short proof before moving on.

Lemma 5.1 minfq : �q � ng � 2log�n

Proof: Let Sq be a stack of q twos; for example, S3 = 22
2

= 16. We will prove that �q � Sbq=2c, giving the
lemma. One can verify that this statement holds for q � 9. Assume that it holds for all q0 � q.

�q+1 = 22
�q�1�2

�(q�1)
2�q fDe�nition of �q+1g

� 22
Sb(q�1)=2c�2

�(q�1)�q

fInductive Assumptiong

� 22
Sb(q�1)=2c�1

= Sb(q+1)=2c fHolds for q � 9g
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The third line follows from the inequality Sb(q�1)=2c � 2
�(q�1) � q � Sb(q�1)=2c�1, which holds for q � 9.

2

5.1.6 Ranks

Recall from Section 5.1.4 that our re�ned hierarchy H is derived from H0by replacing each node x 2 H0

with a subhierarchy H(x). We assign to all nodes in H(x) a non-negative integer rank. The analysis of
our construction would become very simple if for every rank j node y in H(x), mass(y) = �j � norm(x).
Although this is our ideal situation, the nature of our construction does not allow us to place any non-trivial
lower or upper bounds on the mass of y. We will assign ranks in order to satisfy Property 5.1, given below,
which ensures us a suÆciently good approximation to the ideal. It is mainly the internal nodes of H(x) that
can have sub-ideal ranks; we assign ranks to the leaves of H(x) (representing children of x in H0) to be as
close to the ideal as possible.

We should point out that the assignment of ranks is mostly for the purpose of analysis. Rank information
is never stored explicitly in the hierarchy nodes, nor is rank information used, implicitly or explicitly, in the
computation of shortest paths. We only refer to ranks in the construction of H and when analyzing their
e�ect on the � and  functions.

Property 5.1 Let x 2 H0 and y; z 2 H(x) � H.

1. If y is an internal node of H(x) then norm(y) = norm(x) and deg(y) > 1.

2. If y is a leaf of H(x) (i.e., a child of x inH0) then y has rank j, where j is maximal s.t. mass(y)=norm(x) �
�j .

3. Let y be a child of a rank j node. We call y stunted if mass(y)=norm(x) < �j�1=2. Each node has
at most one stunted child.

4. Let y be of rank j. The children of y can be divided into three sets: Y1, Y2, and a singleton fzg such
that (mass(Y1) +mass(Y2))=norm(x) < (2 + o(1)) � �j .

5. Let X be the nodes of H(x) of some speci�c rank. Then
P

y2X mass(y) � 2 � mass(x).

Before moving on let us examine some features of Property 5.1. Part (1) is asserted to guarantee that H
is proper. Part (2) shows how we set the rank of leaves of H(x). Part (3) says that at most one child of any
node is less than half its ideal mass. Part (4) is a little technical but basically says that for a rank j node y,
although mass(y) may be huge the children of y can be divided into sets Y1; Y2; fzg such that Y1 and Y2 are
of reasonable mass | around �j �norm(x). However, no bound is placed on the mass contributed by z. Part
(5) says that if we restrict our attention to the nodes of a particular rank, their subgraphs do not overlap in
too many places. To see how two subgraphs might overlap, consider fxig, the set of nodes of some rank in
H(x). By our construction it will always be the case that the vertex sets fV (xi)g are disjoint; however, this
does not imply that the subtrees fM(xi)g are edge-disjoint because M(xi) can, in general, be much larger
than V (xi).

We show in Section 5.5 that if H is a re�nement of H0 and H satis�es Property 5.1, then �(H) = O(n)
and  (H) = O(nlog�n). Recall from Lemmas 4.2 and 4.3 that �(H) and  (H) are terms in the running
times of Visit-A and Visit-B, respectively.

5.2 Phase 1: The MST and The Coarse Hierarchy

Pettie and Ramachandran [PR02a] recently gave an MST algorithm which runs in time proportional to the
decision-tree complexity of the problem. As the complexity of MST is trivially 
(m) and only known
to be O(m�(m;n)) [Chaz00], it is unknown whether this cost will dominate or be dominated by the
split-findmin(m;n) term. (This issue is mainly of theoretical interest.) In the analysis we use mst(m;n)
to denote the cost of computing the MST. The term mst(m;n) can be interpreted in several ways: as the
decision-tree complexity of MST [PR02a], as the randomized complexity of MST, which is known to be linear
[KKT95, PR02c], or even as the comparison-addition complexity of MST. It is unlikely that additions help;
nonetheless, [PR02a] can be modi�ed to run in the comparison-addition complexity of MST as well.
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Recall from Section 5.1.1 that H0 was de�ned with respect to an arbitrary increasing sequence of norm-
values. We describe below exactly how the norm-values are chosen, then prove that H0 is a proper hierarchy.
Our method depends on how large r is, which is the ratio of the maximum-to-minimum edge length in the
minimum spanning tree. If r < 2n, which can easily be determined in O(n) time, then the possible norm-
values are f`min �2

i : 0 � i � log r+1g, where `min is the minimum edge length in the graph. If r � 2n then
let e1; : : : ; en�1 be the edges inM in non-decreasing order by length and let J = f1g[fj : `(ej) > n�`(ej�1)g.
The possible norm-values are then f`(ej) � 2i : j 2 J and `(ej) � 2i < `(ej+1)g

Under either de�nition, normi is the ith largest norm-value and for an edge e 2 E(M), norm(e) =
normi if `(e) 2 [normi;normi+1). Notice that if no edge length falls within the interval [normi;normi+1)
then normi is an unused norm-value. We only need to keep track of the norm-values in use, of which there
are no more than n� 1.

Lemma 5.2 The coarse hierarchy H0 is a proper hierarchy.

Proof: As we observed before, parts (1), (3), and (4) of De�nition 4.1 are satis�ed for any monoton-
ically increasing sequence of norm-values. De�nition 4.1(2) states that if x is a hierarchy node, either
norm(p(x))=norm(x) is an integer or diam(x)=norm(p(x)) < 1. Suppose x is a hierarchy node and
norm(p(x))=norm(x) is not integral; then norm(x) = `(ej1) � 2

i1 and norm(p(x)) = `(ej2) � 2
i2 , where

j2 > j1. By our method for choosing the norm-values, the lengths of all MST edges are either at least
`(ej2) or less than `(ej2)=n. Since edges in M(x) have length less than `(ej2), and hence less than `(ej2)=n,
diam(x) < (jV (x)j � 1) � `(ej2)=n < `(ej2) � norm(p(x)).

2

Lemma 5.3 We can compute the minimum spanning treeM , and norm(e) for all e 2 E(M), in O(mst(m;n)+
minfn log log r; n logng) time.

Proof: mst(m;n) represents the time to �nd M . If r < 2n then by Lemma 2.2 we can �nd norm(e) for all
e 2M in O(log r+n log log r) = O(n log log r) time. If r � 2n then n log log r = 
(n logn), so we simply sort
the edges of M and determine the indices J in O(n logn) time. Suppose there are nj edges e s.t. norm(e)
is of the form `(ej) � 2i. Since `(e)=`(ej) � nnj we need only generate nj logn values of the form `(ej) � 2i. A
list of the

P
j nj logn = n logn possible norm-values can easily be generated in sorted order. By merging

this list with the list of MST edge lengths, we can determine norm(e) for all e 2M in O(n logn) time.
2

Lemma 5.4, given below, will come in handy in bounding the running time of our preprocessing and single-
source shortest paths algorithms. It says that the total normalized mass in H0 is linear in n. Variations of
Lemma 5.4 are at the core of the hierarchy approach [Tho99, Hag00, Pet02a, Pet02b].

Lemma 5.4 X
x2H0

mass(x)

norm(x)
< 4(n� 1)

Proof: Recall that the notation norm(e) = normi means `(e) 2 [normi;normi+1) where normi is the
ith largest norm-value. Observe that if e 2 M is an MST edge with norm(e) = normi, e can be included
in mass(x) for no more than one x at levels i; i + 1; : : : in H0. Also, it follows from our de�nition of the
norm-values that normi+1=normi � 2 and for any MST edge, `(e)=norm(e) < 2. Therefore, we can bound
the normalized mass in H0 as:

X
x2H0

mass(x)

norm(x)
�

X
e 2M

norm(e) = normi

1X
j=i

`(e)

normj

�
X

e 2M
norm(e) = normi

1X
j=i

`(e)

2j�i � normi
< 4(n� 1)
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M(X)Black vertices are in X T(X)

2
3

2

Figure 5: On the left is a subtree of M , the MST, where X is the set of blackened vertices. In the center is
M(X), the minimal subtree ofM connectingX , and on the right is T (X), derived fromM(X) by splicing out
unblackened degree 2 nodes in M(X) and adjusting edge lengths appropriately. Unless otherwise marked,
all edges are of length 1.

2

Implicit in Lemma 5.4 is a simple accounting scheme where we treat mass, or more accurately normalized
mass, as a currency equivalent to computational work. A hierarchy node x \owns" mass(x)=norm(x) units
of currency. If we can then show that the share of some computation relating to x is bounded by k times its
currency, the total time for this computation is O(kn), that is, of course, if all computation is attributable
to some hierarchy node. Although simple, this accounting scheme is very powerful and can become quite
involved [Pet02a, Pet02b].

5.3 Phase 2: Constructing T (x) trees

Although it is possible to construct an H(x) that satis�es Property 5.1 by working directly with the subtree
M(x), we are unable to eÆciently compute H(x) in this way. The problem is that we have time roughly
proportional to the size of H(x) to construct H(x), whereas M(x) could be signi�cantly larger than H(x).
Our solution is to construct a succinct tree T (x) that preserves the essential structure of M(x) while having
size roughly the same as H(x).

For X � V (G), let T (X) be the subtree derived from M(X) by splicing out all single-child vertices
in V (M(X)) � X . That is, we replace each chain of vertices in M(X), where only the end vertices are
potentially in X , with a single edge; the length of this edge is the sum of its corresponding edge lengths
in M(X). Since there is a correspondence between vertices in T (X) and M we will refer to T (X) vertices
by their names in M . Figure 5 gives examples of M(X) and T (X) trees, where X is the set of blackened
vertices.

If x 2 H0 and fxjgj is the set of children of x, then let T (x) be the tree T (froot(M(xj))gj); note that
root(M(x)) is included in froot(M(xj))gj . Since only some of the edges of M(x) are represented in T (x),
it is possible that the total length of T (x) is signi�cantly less than the total length of M(x) (the mass of
M(x)); however, we will require that any subgraph of T (x) have roughly the same mass as an equivalent
subgraph in M(x). In order to accomplish this we attribute certain amounts of mass to the vertices of T (x)
as follows. Suppose y is a child of x in H0 and v = root(y) is the corresponding root vertex in T (x). We
let mass(v) = mass(y). All other vertices in T (x) have zero mass. The mass of a subtree of T (x) is then
the sum of its edge lengths plus the collective mass of its vertices.

We will think of a subtree of T (x) as corresponding to a subtree ofM(x). Each edge in T (x) corresponds
naturally to a path in M(x) and each vertex in T (x) with non-zero mass corresponds to a subtree of M(x).

Lemma 5.5 For x 2 H0,

1. deg(x) � jV (T (x))j < 2 � deg(x)

2. Let T1 be a subtree of T (x) and T2 be the corresponding tree inM(x). Then mass(T2) � mass(T1) �
2 �mass(T2)

Proof: Part (1) follows from two observations. First, T (x) has no degree two vertices. Second, there are at
most deg(x) leaves of T (x) since each such leaf corresponds to a vertex root(M(y)) for some child y of x
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u2

u3

1u  =  root(T  )x

w = the new u4

v = the new u5

A
lready traversed

u2

u3

u4

4w = LCA(v, u  )

v

1u  =  root(T  )x

Figure 6: The blackened vertices represent those known to be in T (x). The active path of the traversal is
shown in bold edges. Before v is processed (left) the stack consists of hu1; u2; u3; u4i, where u4 is the last
vertex in the traversal known to be in T (x) and w = LCA(v; u4), which implies w 2 T (x). After processing
v (right) the stack is set to hu1; u2; u3; w; vi and w is blackened.

in H0. Part (2) follows since all mass in T2 is represented in T1, and each edge in T2 contributes to the mass
of at most one edge and one vertex in T1.

2

We construct T (x) with a kind of depth �rst traversal of the minimum spanning tree, using the procedure
Succinct-Tree, given in Figure 7. Succinct-Tree focusses on some �xed H0-node x. We will explain
how Succinct-Tree works with the aid of the diagram in Figure 6. At every point in the traversal we
maintain a stack of vertices hu1; : : : ; uqi consisting of all vertices known to be in T (x) whose parents in T (x)
are not yet �xed. The stack has the following properties: ui is ancestral to ui+1, hu1; : : : ; uq�1i are on the
active path of the traversal, and uq is the last vertex known to be in T (x) encountered in the traversal.

In Figure 6 the stack consists of hu1; : : : ; u4i where hu1; u2; u3i are on the active path of the traversal,
marked in bold edges. The preprocessing of v (before making recursive calls) is to do nothing if v 62
froot(M(xj))gj . Otherwise, we update the stack to re
ect our new knowledge about the edges and vertices
of T (x). The vertex w = LCA(uq; v) = LCA(u4; v) must be in T (x). There are three cases: either w
is the ultimate or penultimate vertex in the stack (uq or uq�1), that is, we already know w 2 T (x), or
w lies somewhere on the path between uq and uq�1. Figure 6 diagrams the third situation. Because no
T (x) vertices were encountered in the traversal between uq = u4 and v, there can be no new T (x) vertices
discovered on the path between uq and w. Therefore, we can pop uq o� the stack, designating its parent in
T (x) to be w, and push w and v onto the stack. The other two situations, when w = uq or w = uq�1, are
simpler. If w = uq then we simply push v on the stack and if w = uq�1 we pop uq o� the stack and push v
on. Now consider the postprocessing of v (performed after all recursive calls), and let uq�1; uq be the last
two vertices in the stack. Suppose that v = uq�1. We cannot simply do nothing, because when the active
path retracts there will be two stack vertices (v = uq�1 and uq) outside of the active path, contrary to the
stack properties. However, because no T (x) vertices were discovered between uq and uq�1 we can safely
say uq�1 is the parent of uq in T (x). So, to maintain the stack properties we pop o� uq and add the edge
(uq; uq�1) to T (x).

Lemma 5.6 Given the MST and a list of its edges ordered by level, H0 and fT (x)gx can be constructed in
O(n) time.

Proof: We construct H0 with a union-�nd structure and mark all vertices in M as roots of M(x) for (one
or more) x 2 H0. It is easy to see that we can construct all T (x) for x 2 H0, with one tree traversal given
in Figure 7. We simply maintain a di�erent stack for each Tx under construction. So if v is the root of
several M(y1);M(y2); : : : ; where yi 2 H0, we simply reexecute Lines 1{8 and 10{13 of Succinct-Treefor
each of v's roles. Using a well-known union-�nd based least common ancestors algorithm [AHU76, Tar79b],
we can compute the LCAs in Line 2 in O(n�(n)) time, since the number of �nds is linear in the number of
nodes in H0. If we use the scheme of Buchsbaum et al. [B+98] instead, the cost of �nding LCAs is linear;
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Succinct-Tree(v)
The argument v is a vertex in the MST M .

The stack for T (x) consists of vertices hu1; : : : ; uqi, which
are known to be in T (x) but whose parents in T (x) are not
yet known. All but uq are on the active path of the DFS
traversal. Initially the stack for T (x) is empty.

1. If v = root(y) where y is a child of x in H0, then

2. Let w = LCA(v; uq)

3. If w 6= uq

4. POP uq o� the stack

5. Designate (uq; w) an edge in T (x)

6. If w 6= uq�1

7. PUSH w on the stack

8. PUSH v on the stack

9. Call Succinct-Tree on all the children on v

10. Let uq�1; uq refer to the last two elements in the current stack

11. If v = uq�1

12. POP uq o� the stack

13. Designate (uq ; uq�1) = (uq; v) an edge in T (x)

Figure 7: A procedure for constructing T (x), for a given x 2 H0.
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however, since this algorithm is o�ine (it does not handle LCA queries in the middle of a tree traversal,
unlike [AHU76, Tar79b]) we would need to determine what the LCA queries are with an initial pass over
the tree. Finally, we determine the length of an edge (u; v) 2 T (x) as follows. Let �(u) be the distance from
u to root(M) in M . Suppose v is ancestral to u in M ; then the length of (u; v) is �(u)� �(v). See Lemma
2.1 for a simulation of subtraction in the comparison-addition model.

2

5.4 Phase 3: Constructing the Re�ned Hierarchy

We show in this section how to construct an H(x) from T (x) which is consistent with Property 5.1.
The Refine-Hierarchy procedure, given as pseudocode in Figure 8, constructs H(x) in a bottom-up

fashion by traversing the tree T (x). A call to Refine-Hierarchy(v), where v 2 T (x) will produce an array
of sets v[�] whose elements are nodes in H(x) that represent (collectively) the subtree of T (x) rooted at v.
The set v[j] holds rank j nodes, which, taken together, are not yet massive enough to become a rank j + 1
node. We extend the mass notation to sets v[�] as follows. Bear in mind that this mass is w.r.t. the tree
T (x), not M(x). By Lemma 5.5(2), mass w.r.t. T (x) is a good approximation to the mass of the equivalent
subtree in M(x).

mass(v[j]) = mass

0
@[
j0�j

[
y2v[j0]

V (y)

1
A

The structure of Refine-Hierarchy is fairly simple. To begin with, we initialize v[�] be an array of
empty sets. Then, if v is a root vertex of a child y of x in H0, we create a node representing y and put it
in the proper set in v[�]; which set receives y depends only on mass(y). Next we process the children of v.
Each pass through the loop we pick an as yet unprocessed child w of v, recurse on w, producing sets w[�]
representing the subtree rooted at w, then merge the sets w[�] into their counterparts in v[�]. At this point,
the mass of some sets may be beyond a critical threshold: the threshold for v[j] is �j+1 � norm(x). In order
to restore a quiescent state in the sets v[�] we perform promotions until no set's mass is above threshold.

De�nition 5.1 Promoting the set v[j] involves removing the nodes from v[j], making them the children of
a new rank j+1 node, then placing this node in v[j+1]. There is one exception: if jv[j]j = 1 then to comply
with De�nition 4.1(3), we simply move the node from v[j] to v[j + 1]. Promoting the sets v[0]; v[1]; : : : ; v[j]
means promoting v[0], then v[1], up to v[j], in that order.

Suppose that after merging w[�] into v[�], j is maximal such that mass(v[j]) is beyond its threshold
of �j+1 � norm(x) (there need not be such a j). We promote the sets v[0]; : : : ; v[j] which has the e�ect
of emptying the sets v[0]; : : : ; v[j] and adding a new node to v[j + 1] representing the nodes formerly in
v[0]; : : : ; v[j]. Lemma 5.7, given below, shows that we can compute the H(x) trees in linear time.

Lemma 5.7 Given fT (x)gx, fH(x)gx can be constructed to satisfy Property 5.1 in O(n) time.

Proof: We �rst argue that Refine-Hierarchy produces a re�nement H of H0 which satis�es Property
5.1. We then look at how to implement it in linear time.

Property 5.1(1) states that internal nodes in H(x) must have norm-values equal to that of x, which we
satisfy by simply assigning them the proper norm-values, and that no node of H(x) have one child. By our
treatment of one-element sets in the promotion procedure of De�nition 5.1, it is simply impossible to create
a one-child node in H(x). Property 5.1(5) follows from Lemma 5.5(2) and the observation that the mass (in
T (x)) represented by nodes of the same rank is disjoint. Now consider Property 5.1(3), regarding stunted
nodes. We show that whenever a set v[j] accepts a new node z, either v[j] is immediately promoted, or z
is not stunted, or the promotion of z into v[j] represents the last promotion in the construction of H(x).
Consider the pattern of promotions in Line 9. We promote the sets v[0]; : : : ; v[j] in a cascading fashion: v[0]
to v[1], v[1] to v[2] and so on. The only set accepting a new node which is not immediately promoted is
v[j+1], so in order to prove Property 5.1(3) we must show that the node derived from promoting v[0]; : : : ; v[j]
is not stunted. By choice of j, mass(v[j]) � �j+1 � norm(x), where mass is w.r.t. the tree T (x). By Lemma
5.5(2) the mass of the equivalent tree in M(x) is at least �j+1 � norm(x)=2, which is exactly the threshold
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Refine-Hierarchy(v) where v is a vertex in T (x).

1. Initialize v[j] := ; for all j.

2. If v = root(M(y)) for some child y of x in H0

3. Let j be maximal s.t. mass(y)=norm(x) � �j .

4. v[j] := fyg; (i.e., y is implicitly designated a rank j node)

5. For each child w of v in T (x):

6. Refine-Hierarchy(w)

7. For all i; v[i] := v[i] [ w[i]

8. Let j be maximal such that mass(v[j])=norm(x) � �j+1

9. Promote v[0]; : : : ; v[j] (see De�nition 5.1)

10. If v is the root of T (x), promote v[0]; v[1]; : : : until one node remains.

(This �nal node is the root of H(x).)

Figure 8: Constructing H(x), for a given x 2 H0.

for this node being stunted. Finally, consider Property 5.1(4). Before the merging step in Line 7 none of
the sets in v[�] or w[�] is massive enough to be promoted. Let v[�] and w[�] denote the sets associated with v
and w before the merging in step 7, and let v0[�] denote the set associated with v after the step 7. By the
de�nition of mass we have:

mass(v0[j]) = mass(v[j]) +mass(w[j]) + `(v; w) < 2 � �j+1 � norm(x) + `(v; w)

Since (v; w) is an edge in T (x) it can be arbitrarily large compared to norm(x), meaning we cannot
place any reasonable bound on mass(v0[j]) after the merging step. Let us consider how Property 5.1(4) is
maintained. Suppose that v0[j] is promoted in Lines 9 or 10 and let y be the resulting rank j+1 node. Using
the terminology from Property 5.1(4), let Y1 = v[j]; Y2 = w[j] and let z be the node derived by promoting
v0[0]; : : : ; v0[j � 1]. Since neither v[j] nor w[j] were suÆciently massive to be promoted before they were
merged, we have (mass(Y1) + mass(Y2))=norm(x) < 2�j+1. This is slightly stronger than what Property
5.1(4) calls for, which is the inequality < (2 + o(1))�j+1. We'll see why the (2 + o(1)) is needed below.

Suppose that we implemented Refine-Hierarchy in a straightforward manner. Let L be the (known)
maximum possible index of any non-empty set v[�] during the course of Refine-Hierarchy. One can
easily see that the initialization in Lines 1{4 take O(L + 1) time and that exclusive of recursive calls, each
time through the for loop in Line 5 takes O(L + 1) amortized time. (The bound on Line 5 is amortized
since promoting a set v[j] takes worst case O(jv[j]j + 1) time but only constant amortized time. The cost
of examining a node in v[j] can be charged to the promotion that created it.) The only hidden costs in
this procedure are updating the mass of sets, which is done as follows. After the merging step in Line 7
we simply set mass(v[j]) := mass(v[j]) + `(v; w) + mass(w[j]) for each j � L. Therefore the total cost
of computing H(x) from T (x) is O((L + 1) � jT (x)j). We can bound L as L � 2log�(4n) as follows. The
�rst node placed in any previously empty set is unstunted; therefore, by Lemma 5.1, the maximum non-
empty set has rank at most 2log�(mass(T (x))=norm(x)). By Lemma 5.5(2), and the construction of H0,
mass(T (x)) � 2 � mass(M(x)) < 4(n� 1) � norm(x).

In order to reduce the cost to linear we make a couple adjustments to the Refine-Hierarchy procedure.
First, v[�] is represented as a linked list of non-empty sets. Second, we update the mass variables in a lazy
fashion. The time for Steps 1{4 is dominated by the time to �nd the appropriate j in Step 3, which takes
time t1 { see below. The time for merging the v[�] and w[�] sets in Line 7 is only proportional to the shorter
list; this time bound is given by expression t2 below.

t1 = O

�
1 + log�

mass(v)

norm(x)

�
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t2 = O

�
1 + log�

minfmass(v[�]);mass(w[�])g

norm(x)

�

where mass(v[�]) is just the total mass represented by the v[�] sets. We only update the mass of the �rst
t1+ t2 sets in v[�], and, as a rule, we update v[j +1] half as often as v[j]. It is routine to show that Refine-
Hierarchy will have a lower bound on the mass of v[j] which is o� by a 1+o(1) factor, where the o(1) is
a function of j.5 This leads to the conspicuous 2 + o(1) in Property 5.1(4). To bound the cost of Refine-
Hierarchy we model its computation as a binary tree: leaves represent the creation of nodes in Lines 1{4 and
internal nodes represent the merging events in Line 7. The cost of a leaf f is log�(mass(f)=norm(x)) and the
cost of an internal node f with children f1 and f2 is 1+log�(minfmass(f1)=norm(x);mass(f2)=norm(x)g).
We can think of charging the cost of f collectively to the mass in the subtree of f1 or f2, whichever is smaller.
Therefore, no unit of mass can be charged for two nodes f and g if the total mass under f is within twice
the total mass under g. The total cost is then:

X
f

cost(f) = O(jT (x)j +
mass(T (x))

norm(x)
�
1X
i=0

log�(2i)

2i
) = O(mass(x)=norm(x))

The last equality follows since jT (x)j = O(mass(T (x))=norm(x)) = O(mass(M(x))=norm(x)). Sum-
ming over all x 2 H0, the total cost of constructing fH(x)gx2H0 is, by Lemma 5.4, O(n).

2

Lemma 5.8 In O(mst(m;n)+minfn log log r; n logng) time we can construct both the coarse hierarchy H0

and a re�nement H of H0 satisfying Property 5.1.

Proof: Follows from Lemmas 5.3, 5.6, 5.7.
2

5.5 Analysis

In this section we prove bounds on the running times of Visit-A and Visit-B, given an appropriate re�ned
hierarchy, such as the one constructed in Section 5.4. Theorem 1.1 follows directly from Lemma 5.9, given
below, and Lemma 5.8.

Lemma 5.9 Let H be any re�nement of H0 satisfying Property 5.1. Using H, Visit-A computes SSSP in
O(split-findmin(m;n)) time and Visit-B computes SSSP in O(m + nlog�n) time.

Proof: We prove that �(H) = O(n) and  (H) = O(nlog�n). Together with Lemmas 4.2 and 4.3, this will
complete the proof.

With the observation that mass(x) is an upper bound on the diameter of V (x), we will substitute mass(x)
for diam(x) in the functions � and  . By Lemma 5.4, the �rst sum in � is O(n). The �rst sum of  (H) is
much like in �, except we sum over all nodes inH, not just those nodes which also appear in H0. By Property
5.1(1,3,4) and Lemma 5.1, the maximum rank of any node in H(x) is 2log�(mass(x)=norm(x)) � 2log�n.
By Property 5.1(5) the total mass of nodes of one rank in H(x) is bounded by 2 � mass(x). Therefore, we
can bound the �rst sum in  (H) as

P
xmass(x)=norm(x) � 4log�n �

P
x2H0

mass(x)=norm(x), which is
O(nlog�n) by Lemma 5.4.

We now turn to the second summations in �(H) and  (H), which can be written as
P

x deg(x) log(mass(x)=norm(x))
and

P
x deg(x) logdeg(x), respectively. Since deg(x) � 1 + mass(x)=norm(x), any bound established on

the �rst summation will extend to the second.
Let y be a rank j node. Using the terms from Property 5.1(4), let � = (mass(Y1) +mass(Y2))=norm(y)

and � = mass(y)=norm(y) � �. Property 5.1(3,4) implies that � < (2 + o(1)) � �j and that deg(y) �
2�=�j�1 + 2, where the +2 represents the stunted child and the child z exempted from Property 5.1(4).

5The proof of this is somewhat tedious. Basically one shows that for i < j, the mass of v[i] can be updated at most 2j�i� 1
times before the mass of v[j] is updated. Since 2j�1 � 1 � �i << �j , our neglecting to update the mass of v[j] causes only a
negligible error.
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deg(y) log
mass(y)

norm(y)
�

�
2�

�j�1
+ 2

�
log(�+ �) fSee explanations belowg

= O

�
maxf� log(2�j); �g

�j�1

�

= O

�
�+ �

2j�1

�
= O

�
mass(y)

norm(y) � 2j�1

�

The �rst line follows from our bound on deg(y) and the de�nition of � and �. The second line follows since
� < (2+o(1))�j , and � log(�+�) = O(maxf� log�; �g). The last line follows since log�j = �j�1=2

j�1 > 1.
By the above bound and Property 5.1(5),

P
y2H(x) deg(y) log(mass(y)=norm(y)) = O(mass(x)=norm(x)).

Therefore, by Lemma 5.4, the second summations in both �(H) and  (H) are bounded by O(n).
2

6 Limits of Hierarchy-Type Algorithms

In this section we state a simple property (Property 6.1) of all hierarchy-type algorithms and give a lower
bound on any undirected SSSP algorithm satisfying that property. The upshot is that our SSSP algorithm
is optimal (up to an inverse-Ackermann factor) for a fairly large class of SSSP algorithms, which includes all
hierarchy-type algorithms, variations on Dijkstra's algorithm, and even a recent heuristic SSSP algorithm
[G01].

We will state Property 6.1 in terms of directed graphs. Let cycles(u; v) denote the set of all cycles, includ-
ing non-simple cycles, that pass through both u and v, and let sep(u; v) = minC2cycles(u;v)maxe2C `(e).
Note that in undirected graphs sep(u; v) corresponds exactly to the longest edge on the MST path between
u and v.

Property 6.1 An SSSP algorithm with the hierarchy property computes, aside from shortest paths, a per-
mutation �s : V (G) ! V (G) such that for any vertices u; v, d(s; u) � d(s; v) + sep(u; v) =) �s(u) > �s(v),
where s is the source and d the distance function.

The permutation �s corresponds to the order in which vertices are visited when the source is s. Property
6.1 says that �s is loosely sorted by distance, but may invert pairs of vertices if their relative distance is
less than their sep-value. To see that our hierarchy-based algorithm satis�es Property 6.1, consider two
vertices u and v. Let x be the least common ancestor of u and v in H and let u0 and v0 be the ancestors
of u and v, respectively, which are children of x. By our construction of H, norm(x) � sep(u; v). If
d(s; u) � d(s; v) + sep(u; v) then d(s; u) � d(s; v) + norm(x) and therefore the recursive calls on u0 and v0

which cause u and v to be visited are not passed the same interval argument, since both intervals have width
norm(x). The recursive call on u0 must, therefore, preceed the recursive call on v0 and u must be visited
before v.

Theorem 6.1 Suppose that our computational model allows any set of functions from R
O(1) ! R and

comparison between two reals. Any single-source shortest path algorithm for real-weighted graphs satisfying
Property 6.1 makes 
(m+minfn log log r; n logng) operations in the worst case, where r is the ratio of the
maximum to minimum edge length.

Proof: Let q = log r + 1 be an integer. Assume without loss of generality that 2q divides n � 1. The
MST of the input graph is as depicted in Figure 9. It consists of the source vertex s which is connected to
p = (n � 1)=2 vertices in the top row, each of which is paired with one vertex in the bottom row. All the
vertices (except s) are divided into disjoint groups, where group i consists of exactly p=q randomly chosen
pairs of vertices. There are exactly p!=(p=q)!q = q
(p) possible group arrangements. We will show that any
algorithm satisfying Property 6.1 must be able to distinguish them.

We choose edge lengths as follows. All edges in group i have length 2i. This includes edges from s to the
group's top row and between the two rows. Other non-MST edges are chosen so that shortest paths from
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Figure 9: The minimum spanning tree of the graph

s correspond to paths in the MST. The ratio between the maximum and minimum edge length is at least
2log r+1=21 = r, as called for. Let vi denote any vertex in the bottom row of group i. Then d(s; vi) = 2 �2i and
sep(vi; vj) = 2maxfi;jg. By Property 6.1, vi must be visited before vj if d(s; vi)+sep(vi; vj) � d(s; vj), which
is true for i < j since 2 � 2i + 2j � 2 � 2j . Therefore, any algorithm satisfying Property 6.1 must be prepared
to visit vertices in q
(p) distinct permutations and make at least p log q = 
(n log log r) comparisons in the
worst case. It also must include every non-MST edge in at least one operation, which gives the lower bound.

2

Theorem 6.1 shows that our SSSP algorithm is optimal among hierarchy-type algorithms, to within
a tiny inverse-Ackermann factor. A lower bound on directed SSSP algorithms satisfying Property 6.1 is
given in [Pet02a]. Theorem 6.1 di�ers from that lower bound in two respects. First, the [Pet02a] bound
is 
(m +minfn log r; n logng), which is 
(m + n logn) for even reasonably small values of r. Second, the
[Pet02a] bound holds even if the algorithm is allowed to compute the sep function (and sort the values) for
free. Contrast this with our SSSP algorithm, where the main obstacle to achieving linear time is the need
to sort the sep-values.

7 Discussion

We have shown that with a near-linear time investment in preprocessing, SSSP queries can be answered in
very close to linear time. Furthermore, among a natural class of SSSP algorithms captured by Property 1,
our SSSP algorithm is optimal, aside from a tiny inverse-Ackermann factor. We can imagine several avenues
for further research. The most interesting, in our opinion, is developing feasible alternatives to Property 1
which do not have intrinsic sorting bottlenecks. This approach could be termed algorithm design in reverse:
�rst one de�nes a desirable property, then one looks for algorithms with that property. Another avenue,
which might have some real-world impact, is to reduce the preprocessing cost of the directed shortest path
algorithm in [Pet02a] from O(mn) to near-linear, as it is in our algorithm.

The marginal cost of computing SSSP with our algorithm may or may not be linear; it all depends on
the complexity of the split-�ndmin structure. This data structure, invented �rst by Gabow [G85] for use in
a weighted matching algorithm, actually has connections with other fundamental problems. For instance,
it can be used to solve the minimum spanning tree (and shortest path tree) sensitivity analysis problems6.
Therefore, by Theorem 4.1 these problems have complexity O(m log�(m;n)), an �= log� improvement over
Tarjan's path-compression-based algorithm [Tar82]. If we consider the o�ine version of the split-�ndmin
problem, where all splits and decrease-keys are given in advance, one can show that it is reducible to both the
MST problem and the MST sensitivity analysis problem. None of these reductions proves whether mst(m;n)
dominates split-findmin(m;n) or vice versa; however, they do suggest that we have no hope of solving the
MST problem [PR02c] without �rst solving the manifestly simpler split-�ndmin and MST sensitivity analysis
problems.

6This is an unpublished result that will appear in the Ph.D. thesis of the �rst author. It uses the split-�ndmin structure in
a straightforward way. See [Tar79, Tar82, DRT92] for other sensitivity analysis algorithms.
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The experimental study of Pettie et al. [PRS02] shows that our algorithm is very eÆcient in practice.
However, the [PRS02] study did not explore all possible implementation choices, such as the proper heap
to use, the best preprocessing algorithm, or di�erent implementations of the split-�ndmin structure. To our
knowledge, no one has investigated whether the other hierarchy-type algorithms [Tho99, Hag00, Pet02a] are
competitive in real-world scenarios.

Another open research problem is the parallel time-work complexity of SSSP. There are several published
algorithms on the subject [BTZ98, C+98, KS97, M02, TZ96], though none runs in worst-case polylogarithmic
time using work comparable to Dijkstra's algorithm. There is clearly some parallelism in the hierarchy-based
approach. Whether this approach can lead to a parallel algorithm which improves upon existing ones is an
open question.

APPENDIX

A The Bucket-Heap

The bucket-heap structure consists of an array of buckets, where the ith bucket spans the interval [Æ+ i�; Æ+
(i + 1)�), for �xed reals Æ and �. Logically speaking, a heap item with key � appears in the bucket whose
interval spans �. We are never concerned about the relative order of items within the same bucket. We
restate below the speci�cation of the bucket-heap then prove the bounds claimed in Lemma 4.1.

create(�; Æ) Create a new Bucket-Heap whose buckets are associated
with intervals [Æ; Æ + �); [Æ + �; Æ + 2�); [Æ + 2�; Æ + 3�); : : :
An item x lies in the bucket whose interval spans key(x).
All buckets are initially open.

insert(x; �) Insert a new item x with key(x) = �.
decrease-key(x; �) Set key(x) = minfkey(x); �g. It is guaranteed that x is

not moved to a closed bucket.
enumerate Close the �rst open bucket and enumerate its contents.

(Lemma 4.1) Let �x denote the number of buckets between the �rst open bucket at the time of x's insertion
and the bucket from which x was enumerated. The Bucket-Heap can be implemented on a pointer machine to
run in O(m+ n+ b+

P
x log(�x +1)) time, where n;m, and b are the number of insertions, decrease-keys,

and enumerates, respectively.
Proof: Our structure simulates the logical speci�cation given above; it actually consists of levels of bucket
arrays. The level zero buckets are the ones referred to in the bucket-heap's speci�cation, and the level i
buckets preside over disjoint intervals of 2i level zero buckets. The interval represented by a higher-level
bucket is the union of its component level zero buckets. Only one bucket at each level is active: it is the �rst
one which presides over no closed level zero buckets. See Figure 10. Suppose that an item x should logically
be in the level zero bucket B. We maintain the invariant that x is either descending and in the lowest active
bucket presiding over B, or ascending and in some active bucket presiding over level zero buckets before B.

To insert a node we put it in the �rst open level zero bucket and label it ascending. This clearly satis�es
the invariant. The result of a decrease-key depends on whether the node x is ascending or descending.
Suppose x is ascending and in a bucket (at some level) spanning the interval [a; b). If key(x) < b we relabel
it descending, otherwise we do nothing. If x is descending (or was just relabeled descending) we move it
to the lowest level active bucket consistent with the invariant. If x drops i � 0 levels we assume this is
accomplished in O(i+ 1) time, i.e., we search from its current level down, not from the bottom-up.

Suppose we close the �rst open level zero bucket B. According to the invariant all items which are
logically in B are descending and actually in B, so enumerating them is no problem; there will, in general,
be ascending items in B which do not logically belong there. In order to maintain the invariant we must
deactivate all active buckets which preside over B (including B). Consider one such bucket at level i. If
i > 0 we move each descending node in it to the level i� 1 active bucket. For each ascending node (at level
i � 0), depending on its key we either move it to the level i + 1 active bucket and keep it ascending, or
relabel it descending and move it to the proper active bucket at level � i+ 1.
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Figure 10: Active buckets are shaded.

From the invariant it follows that no node x appears in more than 2 log(�x + 1) + 1 distinct buckets:
log(�x + 1) + 1 buckets as an ascending node and another log(�x + 1) as a descending node. Aside from
this cost of moving nodes around, the other costs are clearly O(m+ n+ b), giving the lemma.

2

We remark that the bucket heap need not actually label the items. Whether an item is ascending or
descending can be inferred from context.

B The Split-Findmin Problem

The split-�ndmin problem is to maintain a collection of sequences of weighted elements under the following
operations.

split(x) Split the sequence containing x into two sequences: the
elements up to and including x and the rest.

decrease-key(x; �) Set key(x) = minfkey(x); �g
�ndmin(x) Return the element in x's sequence with minimum key.

Gabow [G85] gave an elegant algorithm for this problem that is nearly optimal. On an initial sequence of
n elements, it handles up to n�1 splits and m decrease-keys in O((m+n)�(m;n)) time. Gabow's algorithm
runs on a pointer machine [Tar79]. We now prove Theorem 4.1 from Section 4.2.
(Theorem 4.1) The split-�ndmin problem can be solved on a pointer machine in O(n+m�) time while making
only O(n + m log�) comparisons, where � = �(m;n) is the inverse-Ackermann function. Alternatively,
split-�ndmin can be solved on a RAM in time �(split-findmin(m;n)), where split-findmin(m;n) is the
decision-tree complexity of the problem, or the expected decision-tree complexity for randomized algorithms.
Proof: In Gabow's decrease-key routine a sequence of roughly � variables need to be updated, although it
is already known that their values are monotonically decreasing. We observe that, on a pointer machine, the
same task can be accomplished in O(�) time using O(log�) comparisons for a binary search. Using a simple
two-level scheme one can easily reduce the n� term in the running time to n. This gives the split-�ndmin
algorithm that performs O(m log�(m;n) + n) comparisons.

To get a potentially faster algorithm on the RAM model we construct all possible split-�ndmin solvers
on inputs with at most q = log logn elements and choose one which is close to optimal for all problem sizes.
We then show how to compose this optimal split-�ndmin solver on q elements with Gabow's structure to get
an optimal one on n elements.

We consider only instances with m0 < q2 decrease-keys. If more decrease-keys are actually encountered
we can revert to Gabow's algorithm [G85] or a trivial one that runs in O(m0) time.

We represent the state of the solver with three components: a bit-vector with length q � 1 representing
where the splits are, a directed graph H on no more than q +m0 < q(q + 1) vertices representing known
inequalities between current keys and older keys retired by decrease-key operations, and �nally, a mapping
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from elements to vertices in H . One may easily con�rm that the state can be represented in no more than
3q4 = o(logn) bits. One may also con�rm that a split or decrease-key can update the state in O(1) time.
We now turn to the �ndmin operation. Consider the �ndmin-action function, which determines the next
step in the �ndmin procedure. It can be represented as:

�ndmin-action : state � f1; : : : ; qg !

 
V (HX ) � V (HX )

!
[ f1; : : : ; qg

where the �rst f1; : : : ; qg represents the argument to the �ndmin query. The �ndmin-action function can
either perform a comparison (represented by V (HX)� V (HX)) which, if performed, will alter the state, or
return an answer to the �ndmin query, represented by the second f1; : : : ; qg. One simply applies the �ndmin-
action function until it produces an answer. We will represent the �ndmin-action function as a table. Since
the state is represented in o(logn) bits we can keep it in one machine word; therefore, computing the
�ndmin-action function (and updating the state) takes constant time on a RAM.

One can see that any split-�ndmin solver can be converted into another with equal amortized complexity
but which performs comparisons only during calls to �ndmin. Therefore, �nding the optimal �ndmin-action
function is tantamount to �nding the optimal split-�ndmin solver.

We have now reduced the split-�ndmin problem to a brute force search over the �ndmin-action function.
There are less than F = 23q

4

� q � (q4 + q) < 24q
4

distinct �ndmin-action functions, most of which do not

produce correct answers. There are less than I = (2q + q2(q + 1))q
2+3q distinct instances of the problem,

because the number of decrease-keys is < q2, �ndmins < 2q and splits < q. Furthermore, each operation can
be a split or �ndmin, giving the 2q term, or a decrease-key, which requires us to chose an element and where
to �t its new key into the permutation, giving the q2(q + 1) term. Each �ndmin-action/problem instance
pair can be tested for correctness in V = O(q2) time, therefore all correct �ndmin-action functions can be

chosen in time F � I � V = 2
(q
4). For q = log logn this is o(n), meaning the time for this brute force search

does not a�ect the other constant factors involved.
How do we choose the optimal split-�ndmin solver? This is actually not a trivial question because of the

possibility of there not being one solver which dominates all others on all input sizes. Consider charting the
worst-case complexity of a solver S as a function gS of the number of operations p in the input sequence. It is
plausible that certain solvers are optimal for only certain densities p=q. We need to show that for some solver
S�, gS� is within a constant factor of the lower envelope of fgSgS , where S ranges over all correct solvers.
Let Sk be the optimal solver for 2k operations. We let S� be the solver which mimics Sk from operations
2k�1 + 1 to 2k. At operation 2k it resets its state, reexecutes all 2k operations under Sk+1, and continues
using Sk+1 until operation 2k+1. Since gSk+1

(2k+1) � 2 � gSk(2
k) it follows that gS�(p) � 4 �minSfgS(p)g.

Our overall algorithm is very simple. We divide the n elements into n0 = n=q super-elements, each
representing a contiguous block of q elements. Each unsplit sequence then consists of three parts: two
subsequences in the leftmost and rightmost super-elements and a third subsequence consisting of unsplit
super-elements. We use Gabow's algorithm on the unsplit super-elements, where the key of a super-element
is the minimum over constituent elements. For the super-elements already split, we use the S� split-�ndmin
solver constructed as above. The cost of Gabow's algorithm is O((m+ n=q)�(m;n=q)) = O(m+ n) and the
cost of using S� on each super-element is �(split-findmin(m;n) by construction; therefore the overall cost
is �(split-findmin(m;n)).

One can easily extend the proof to randomized split-�ndmin solvers by de�ning the �ndmin-action as
selecting a distribution over actions.

2

We note that the time bound of Theorem 4.1 on pointer machines is provably optimal. La Poutr�e [L96]
gave a lower bound on the pointer machine complexity of the split-�nd problem, which is subsumed by the
split-�ndmin problem. This results in this section address the RAM complexity and decision tree complexity
of split-�ndmin, which are unrelated to La Poutr�e's result.
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