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in a directed graph subject to an intermixed sequence of
edge insertions and edge deletions. The bounds reported
in this entry were originally presented for the case of di-
rected acyclic graphs, but can be extended to general di-
rected graphs using the following theorem from [2]:

Theorem 1 Given a general directed graph with n vertices,
there is a data structure for the fully dynamic reachability
problem that supports each insertion/deletion in O(n1:575)
time and each reachability query in O(n0:575) time. The al-
gorithm is randomized with one-sided error.

The idea described in [1] is to maintain reachability infor-
mation from the source vertex s to all other vertices ex-
plicitly by keeping a Boolean array R of size n such that
R[y] = 1 if and only if there is a directed path from s to
y. An instance D of the data structure for fully dynamic
reachability of Theorem is also maintained. After each in-
sertion or deletion, it is possible to update D in O(n1:575)
time and then rebuild R in O(n � n0:575) = O(n1:575) time
by letting R[y]  D:reachable (s,y) for each vertex y.
This yields the following bounds for the single-source fully
dynamic reachability problem:

Theorem 2 Given a general directed graph with n vertices,
there is a data structure for the single-source fully dynamic
reachability problem that supports each insertion/deletion
in O(n1:575) time and each reachability query in O(1) time.

Applications

The graph reachability problem is particularly relevant to
the field of databases for supporting transitivity queries on
dynamic graphs of relations [3]. The problem also arises
in many other areas such as compilers, interactive verifi-
cation systems, garbage collection, and industrial robotics.

Open Problems

An important open problem is whether one can extend
the result described in this entry to maintain fully dynamic
single-source shortest paths in subquadratic time per op-
eration.
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ProblemDefinition

The single source shortest path problem (SSSP) is, given
a graph G = (V ; E; `) and a source vertex s 2 V , to find
the shortest path from s to every v 2 V . The difficulty of
the problem depends on whether the graph is directed or
undirected and the assumptions placed on the length func-
tion `. In the most general situation ` : E ! R assigns ar-
bitrary (positive & negative) real lengths. The algorithms
of Bellman-Ford and Edmonds [1,4] may be applied in
this situation and have running times of roughly O(mn),1

where m = jEj and n = jV j are the number of edges and
vertices. If ` assigns only non-negative real edge lengths
then the algorithms of Dijkstra and Pettie-Ramachan-
dran [4,14] may be applied on directed and undirected
graphs, respectively. These algorithms include a sorting
bottleneck and, in the worst case, take ˝(m + n log n)
time.2

A common assumption is that ` assigns integer edge
lengths in the range f0; : : : ; 2w � 1g or f�2w�1; : : : ;
2w�1 � 1g and that the machine is a w-bit word RAM;
that is, each edge length fits in one register. For general
integer edge lengths the best SSSP algorithms improve on
Bellman-Ford and Edmonds by a factor of roughly

p
n [7].

For non-negative integer edge lengths the best SSSP algo-
rithms are faster than Dijkstra and Pettie-Ramachandran

1Edmonds’s algorithm works for undirected graphs and presumes
that there are no negative length simple cycles.

2The [14] algorithm actually runs inO(m + n log log n) time if the
ratio of any two edge lengths is polynomial in n.
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by up to a logarithmic factor. They are frequently based on
integer priority queues [10].

Key Results

Thorup’s primary result [17] is an optimal linear time
SSSP algorithm for undirected graphs with integer edge
lengths. This is the first and only linear time shortest path
algorithm that does not make serious assumptions on the
class of input graphs.

Theorem 1 There is a SSSP algorithm for integer-weighted
undirected graphs that runs in O(m) time.

Thorup avoids the sorting bottleneck inherent in Dijk-
stra’s algorithm by precomputing (in linear time) a compo-
nent hierarchy. The algorithm of [17] operates in a manner
similar to Dijkstra’s algorithm [4] but uses the component
hierarchy to identify groups of vertices that can be visited
in any order. In later work, Thorup [18] extended this ap-
proach to work when the edge lengths are floating-point
numbers.3

Thorup’s hierarchy-based approach has since been
extended to directed and/or real-weighted graphs, and
to solve the all pairs shortest path (APSP) prob-
lem [12,13,14]. The generalizations to related SSSP prob-
lems are summarized by below. See [12,13] for hierarchy-
based APSP algorithms.

Theorem 2 (Hagerup [9], 2000) A component hierar-
chy for a directed graph G = (V ; E; `), where ` : E !
f0; : : : ; 2w � 1g, can be constructed in O(m logw) time.
Thereafter SSSP from any source can be computed in
O(m + n log log n) time.

Theorem 3 (Pettie and Ramachandran [14], 2005)
A component hierarchy for an undirected graph G =
(V ; E; `), where ` : E ! R+, can be constructed in
O(m˛(m; n)+minfn log log r; n log ng) time, where r is the
ratio of the maximum-to-minimum edge length. Thereafter
SSSP from any source can be computed in O(m log˛(m; n))
time.

The algorithms of Hagerup [9] and Pettie-Ramachan-
dran [14] take the same basic approach as Thorup’s algo-
rithm: use some kind of component hierarchy to identify
groups of vertices that can safely be visited in any order.
However, the assumption of directed graphs [9] and real
edge lengths [14] renders Thorup’s hierarchy inapplicable
or inefficient. Hagerup’s component hierarchy is based on
a directed analogue of the minimum spanning tree. The

3There is some flexibility in the definition of shortest path since
floating-point addition is neither commutative nor associative.

Pettie-Ramachandran algorithm enforces a certain degree
of balance in its component hierarchy and, when comput-
ing SSSP, uses a specialized priority queue to take advan-
tage of this balance.

Applications

Shortest path algorithms are frequently used as a sub-
routine in other optimization problems, such as flow and
matching problems [1] and facility location [19]. A widely
used commercial application of shortest path algorithms is
finding efficient routes on road networks, e. g., as provided
by Google Maps, MapQuest, or Yahoo Maps.

Open Problems

Thorup’s SSSP algorithm [17] runs in linear time and is
therefore optimal. The main open problem is to find a lin-
ear time SSSP algorithm that works on real-weighted di-
rected graphs. For real-weighted undirected graphs the
best running time is given in Theorem 3. For integer-
weighted directed graphs the fastest algorithms are based
on Dijkstra’s algorithm (not Theorem 2) and run in
O(m

p
log log n) time (randomized) and deterministically

in O(m + n log log n) time.

Problem 1 Is there an O(m) time SSSP algorithm for inte-
ger-weighted directed graphs?

Problem 2 Is there an O(m) + o(n log n) time SSSP al-
gorithm for real-weighted graphs, either directed or undi-
rected?

The complexity of SSSP on graphs with positive & negative
edge lengths is also open.

Experimental Results

Asano and Imai [2] and Pettie et al. [15] evaluated the per-
formance of the hierarchy-based SSSP algorithms [14,17].
There have been a number of studies of SSSP algorithms
on integer-weighted directed graphs; see [8] for the latest
and references to many others. The trend in recent years is
to find practical preprocessing schemes that allow for very
quick point-to-point shortest path queries. See [3,11,16]
for recent work in this area.

Data Sets

See [5] for a number of US and European road networks.

URL to Code

See [6] and [5].



Ski Rental Problem S 849

Cross References

� All Pairs Shortest Paths via Matrix Multiplication

Recommended Reading

1. Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs
(1993)

2. Asano, Y., Imai, H.: Practical efficiency of the linear-time algo-
rithm for the single source shortest path problem. J. Oper. Res.
Soc. Jpn. 43(4), 431–447 (2000)

3. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In tran-
sit to constant shortest-path queries in road networks. In: Pro-
ceedings 9th Workshop on Algorithm Engineering and Experi-
ments (ALENEX), 2007

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, Cambridge (2001)

5. Demetrescu, C., Goldberg, A.V., Johnson, D.: 9th DIMACS
Implementation Challege—Shortest Paths. http://www.dis.
uniroma1.it/~challenge9/ (2006)

6. Goldberg, A.V.: AVG Lab. http://www.avglab.com/andrew/
7. Goldberg, A.V.: Scaling algorithms for the shortest paths prob-

lem. SIAM J. Comput. 24(3), 494–504 (1995)
8. Goldberg, A.V.: Shortest path algorithms: Engineering aspects.

In: Proc. 12th Int’l Symp. on Algorithms and Computation
(ISAAC). LNCS, vol. 2223, pp. 502–513. Springer, Berlin (2001)

9. Hagerup, T.: Improved shortest paths on the word RAM. In:
Proc. 27th Int’l Colloq. on Automata, Languages, and Program-
ming (ICALP). LNCS vol. 1853, pp. 61–72. Springer, Berlin (2000)

10. Han, Y., Thorup, M.: Integer sorting inO(n
p
log log n) expected

time and linear space. In: Proc. 43rd Symp. on Foundations of
Computer Science (FOCS), 2002, pp. 135–144

11. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Com-
puting many-to-many shortest paths using highway hierar-
chies. In: Proceedings 9thWorkshop onAlgorithmEngineering
and Experiments (ALENEX), 2007

12. Pettie, S.: On the comparison-addition complexity of all-pairs
shortest paths. In: Proc. 13th Int’l Symp. on Algorithms and
Computation (ISAAC), 2002, pp. 32–43

13. Pettie, S.: A new approach to all-pairs shortest paths on real-
weighted graphs. Theor. Comput. Sci. 312(1), 47–74 (2004)

14. Pettie, S., Ramachandran, V.: A shortest path algorithm for real-
weighted undirected graphs. SIAM J. Comput. 34(6), 1398–
1431 (2005)

15. Pettie, S., Ramachandran, V., Sridhar, S.: Experimental evalua-
tion of a new shortest path algorithm. In: Proc. 4th Workshop
on Algorithm Engineering and Experiments (ALENEX), 2002,
pp. 126–142

16. Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In:
Proc. 14th European Symposium on Algorithms (ESA), 2006,
pp. 804–816

17. Thorup, M.: Undirected single-source shortest paths with pos-
itive integer weights in linear time. J. ACM 46(3), 362–394
(1999)

18. Thorup, M.: Floats, integers, and single source shortest paths.
J. Algorithms 35 (2000)

19. Thorup, M.: Quick and good facility location. In: Proceedings
14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2003, pp. 178–185

Ski Rental Problem
1990; Karlin, Manasse, McGeogh, Owicki

MARK S. MANASSE
Microsoft Research, Mountain View, CA, USA

Index Terms

Ski-rental problem, Competitive algorithms, Determinis-
tic and randomized algorithms, On-line algorithms

Keywords and Synonyms

Oblivious adversaries, Worst-case approximation, Metri-
cal task systems

ProblemDefinition

The ski rental problemwas developed as a pedagogical tool
for understanding the basic concepts in some early results
in on-line algorithms.1 The ski rental problem considers
the plight of one consumer who, in order to socialize with
peers, is forced to engage in a variety of athletic activities,
such as skiing, bicycling, windsurfing, rollerblading, sky
diving, scuba-diving, tennis, soccer, and ultimate Frisbee,
each of which has a set of associated apparatus, clothing,
or protective gear.

In all of these, it is possible either to purchase the ac-
coutrements needed, or to rent them. For the purpose of
this problem, it is assumed that one-time rental is less ex-
pensive than purchasing. It is also assumed that purchased
items are durable, and suitable for reuse for future activ-
ities of the same type without further expense, until the
items wear out (which occurs at the same rate for all users),
are outgrown, become unfashionable, or are disposed of

1In the interest of full disclosure, the earliest presentations of these
results described the problem as the wedding-tuxedo-rental problem.
Objections were presented that this was a gender-biased name for
the problem, since while groomsmen can rent their wedding apparel,
bridesmaids usually cannot. A further complication, owing to the dif-
ficulty of instantaneously producing fitted garments or ski equipment
outlined below, suggests that some complications could have been
avoided by focusing on the dilemma of choosing between daily lift
passes or season passes, although this leads to the pricing complexi-
ties of purchasing season passes well in advance of the season, as op-
posed to the higher cost of purchasing them at the mountain during
the ski season. A similar problem could be derived from the question
as to whether to purchase the daily newspaper at a newsstand or to
take a subscription, after adding the challenge that one’s peers will
treat one contemptuously if one has not read the news on days on
which they have.
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