COMP260 Spring 2014 Notes:
February 4th

Andrew Winslow

In these notes, all graphs are undirected. We consider matching, covering, and
packing in bipartite graphs, general graphs, and hypergraphs. We also introduce the
concept of NP-hardness.

1 Matching in Bipartite Graphs

In lecture 2 (by Greg), we considered matchings and perfect matchings on graphs:

Definition 1. A matching of a graph G = (V, E) is a subset E' C E such that every
vertex v € V is an endpoint of at most one edge in E'.

Definition 2. A perfect matching of a graph G = (V, E) is a subset E' C E such that
every vertex v € V is an endpoint of exactly one edge in E'.

A characterization of the bipartite graphs with perfect matchings was also given:

Theorem 3 (Hall’s Theorem). A bipartite graph G = (V1, Va, E) has a perfect match-
ing iff for every subset V€ V1, |V| < [{vg € Vo : v1 € V1, {v1,v2} € E}|.

For a moment I want to think about a related problem on graphs you’ve probably
seen before:

Definition 4. Given a graph G = (V, E), a subset V' C V is a vertex cover of G
provided for every edge {v1,v2} € E, either vy or vg isin V',

Problem 5 (Minimum vertex cover). Given a graph G = (V, E), find a smallest vertex
cover of G.

Any set of vertices V'’ with {{u,v} : u € V'} (smallest or otherwise) is called a
vertex cover of the graph. Intuitively, a cover is a dusting of vertices so that every edge
in the graph is “covered” by some vertex, although you might also say that each edge is
“hit” by some vertex. Note that vertex cover is a minimization problem, with the goal
to find a vertex cover that is as small as possible. On the other hand, finding a large
matching in a graph is a maximization problem:

Problem 6 (Maximum matching). Given a graph G = (V| E), find a largest set of
edges E' C E such that E' is a matching on G.



If a graph G has a perfect matching, then any solution to the maximum matching
problem on G should be a perfect matching. Hall’s Theorem says that determining
whether a graph has a perfect matching is equivalent to some condition on every subset
of one of the wo vertex partitions. But you also that it is possible to determine whether
a matching is maximum via checking for an augmenting path:

Theorem 7. For a bipartite graph G = (V1,Va, E), a set of edges E' C E is a
maximum matching iff there is no path vy, vs, ..., v, in G with edges alternating in
membership between E — E' and E'.

So Hall’s Theorem and alternating paths are two ways to ideas related to finding a
maximum matching of a graph. Here’s another one, with a proof courtesy of [1]:

Theorem 8 (Konig’s Theorem). Given a bipartite graph G = (V1,V2, E), G has a
maximum matching of size a if and only if G has a minimum vertex cover of size a.

Proof. Denote the size of a maximum matching and minimum vertex cover of a graph
G by a(G) and (G), respectively. First, observe that for any graph G = (V| E),
a(G) < B(@), since any vertex cover requires at least one endpoint of every edge in
a matching. Now suppose, for the sake of contradiction, that G is a minimal graph
with a(G) # B(G). Since G is minimal, G is connected. Since G is connected and
a(G) # B(G), G is not a cycle or a path, and so G has at least one vertex u of degree 3
or more with a neighbor v.

If a(G — v) < a(Q), then since G is minimal, G — v has a cover V' with |V'| =
a(G —v) < a(G@). So V' U {v} is a vertex cover of G and |V’ U {v}| < «(G).
So B(G) < a(G) and so B(G) = a(G), a contradiction. So a(G —v) £ a(G)
and a(G — v) = a(G). So there exists a maximum matching E’ of G with no edges
incident to v.

Since u is degree 3 or more, there is an edge e incident to u, not incident to v,
and not in E’. Since G is minimal, there exists a cover V" of G — e with |V"| =
|E'| = a(G). Since E’ has no edges incident to v, |[V”| = |E’|, and V" must have a
vertex on each edge of F’, v is notin V”. So V" contains « and is a cover of G. So

a(G) = B(G). O

The key to this proof is repeated abuse of the minimality of the counterexample
to prove that there exists a cover of a slightly smaller graph with size «(G) that also
suffices to cover G.

It is natural to wonder whether extending Konig’s Theorem to general graphs is
possible. However, think of even a simple case of the complete graph on n vertices,
K,,. Every matching, including maximum matchings, has size at most |n/2|. Every
vertex cover, including minimum vertex covers, has size at least n — 1, since omitting
any pair of vertices from the cover leaves the edge between them uncovered. So in this
case the maximum matching and minimum vertex cover sizes differ by about n/2.

It should also be noted that Konig’s Theorem and Hall’s Theorem are actually
equivalent, as are many other theorems (Menger’s Theorem, Egervary’s statement,
Birkhoff-Von Neumann Theorem, Dilworth’s Theorem, Max-Flow Min-Cut Theorem),
even though they may not look that way, e.g. the Birkhoff-Von Neumann Theorem is a
statement about doubly stochastic matrices.



2 Edmonds’ Algorithm for Maximum Matching

3 Minimum Edge Covers

Just like vertex covers are subsets of vertices where every edge of the graph is coinci-
dent to some vertex in the cover, edge covers are subsets of edges so that every vertex
of the graph is coincident to some edge in the cover:

Definition 9. Given a graph G = (V, E), a subset E' C E is an edge cover of G
provided every vertex in'V is an endpoint of some edge in E'.

Homework 1. Prove that every perfect matching is a minimum edge cover.

Edge covers and matchings are sets of edges with opposite goals: covers must touch
all the vertices, while matchings cannot share vertices.

Problem 10 (Minimum edge cover). Given a graph G = (V, E), find a minimum edge
cover

The minimum edge cover problem is the covering (minimization) equivalent of the
packing (maximization) problem for edges known as the maximum matching prob-
lem. Somewhat weirdly, there is a simple way to turn any maximum matching into
a minimum edge cover by adding extra edges to vertices not covered by edges in the
maximum matching, giving the following result:

Theorem 11. The minimum edge cover problem has a polynomial-time algorithm.

Homework 2. Prove that for any graph G = (V, E) with maximum matching E' C E,
there exists a minimum edge cover E" with E' C E" and |E"| — |E'| = |V]| —
2|E’|. That is, every maximum matching can be extended into a minimum edge cover
by adding one edge per vertex.

4 Other Packing and Covering Problems

Many problems on graphs are either minimization problems where the goal is to use
the fewest of something to cover the entire graph, or maximization problems where the
goal is the pack as many things into the graph. Minimum vertex cover and edge cover
are clearly covering problems, while maximum matching is a packing problem. Here
we give two other well-known packing and covering problems on graphs:

Definition 12. Given a graph G = (V, E), a subset V' C V is an independent set
provided that for any pair of vertices u,v € V', {u,v} ¢ E.

Problem 13 (Maximum independent set). Given a graph G = (V, E), find a maximum
independent set.

Definition 14. Given a graph G = (V, E), a subset V! C V is a dominating set if for
every vertex in'V is either in V' or a neighbor of a vertex in V.



Problem 15 (Minimum dominating set). Given a graph G = (V, E), find a minimum
dominating set.

There is evidence that both of these problems do not have efficient (polynomial-
time) algorithms, but developing a proof has turned out to be harder and worth moreE]
than originally thought. In Section [7] we return to the dominating set problem to prove
a theorem that says that no polynomial-time algorithm for the minimum dominating set
problem exists, assuming a widely believed conjecture. Before then, we need to build
some machinery.

5 NP-hardness

For a moment, let’s forget about problems phrased like “Let G be a graph. Find a
minimum ...” or “Let GG be a graph. Find a maximum . ..” and instead only consider
problems of the form “Let G be a graph and a an integer. Does there exist a ... of
size at most a?” and “Let G be a graph and a an integer. Does there exist a . .. of size
at least a?” These problems only ask for a decision, “Yes” or “No”, and we call them
decision problems. Consider the following subset of decision problems:

Definition 16. A problem is said to be in the complexity class NP if there exists a
polynomial-time algorithm to decide whether a solution is valid.

Notice that NP is the class of decision problems for which another decision prob-
lem (the problem of determining whether a given solution is valid) has a polynomial-
time algorithm. This is a little subtle, but here are some examples:

Problem 17 (Independent set). Given a graph G = (V, E') and integer a, does G have
an independent set of size at least a?

Problem 18 (Dominating set). Given a graph G = (V, E) and integer a, does G have
a dominating set of size at most a?

Problem 19 (Vertex cover). Given a graph G = (V, E) and integer a, does G have a
vertex cover of size at most a?

For each of these problems, a proposed solution is given as a set of vertices. De-
termining whether the set is an independent set, dominating set, or vertex cover can be
done in polynomial-time by checking various edges and vertices in the graph. So each
of these problems is in the complexity class NP.

A problem’s membership in NP is an upper bound on its difficulty — it means that
the problem has some nice structure and can be solved using some bounded amount
of time and space on a computer. Membership in the class NP in particular means
that the problem has a polynomial-time algorithm on a special kind of computer that
makes lucky guesses. There are currently 495 known complexity classesE] with many
kinds of restrictions, and showing relationships between these classes is an active area
of research.

1$1,000,000 (http://en.wikipedia.org/wiki/Millennium_Prize_Problems)
Zhttps://complexityzoo.uwaterloo.ca/Complexity_Zoo
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After seeing that maximum matching and minimum edge cover problems had polynomial-
time algorithms, you may be wondering whether problems like minimum vertex cover
(or maximum independent set, or minimum dominating set...) also have polynomial-
time algorithms. The truth is that we don’t know.

What we do know is that these problems are all related in a the following way:
given an instance A of one problem, this instance can be transformed into an instance
of another problem A’, so that the answer to A is “Yes” if and only if the answer to A’ is
“Yes. Moreover, the transformation takes only polynomial time. Such a transformation
is called a polynomial-time many-one reduction.

Ok...so why is this useful? Many, many problems are known to be polynomial-
time many-one reducible to each other (notice this reducibility is transitive). Problems
like independent set, dominating set, and vertex cover are all known to be polynomial-
time many-one reducible to each other, and the hardest problems in the class NPare
also reducible to them. It is conjectured that the hardest problems in the class NPdo
not have polynomial-time algorithms (called the P # NP conjecture). If they don’t,
then neither do independent set, dominating set, and vertex cover, since these hardest
problems can be turned into independent set, dominating set, and vertex cover problems
in polynomial time. So constructing a polynomial-time many-one reduction from one
of these problems to a new problem shows the new problem also likely does not have
a polynomial-time algorithm.

We call these problems that are as hard as the hardest problems in NP NP-hard
problems. Suppose we are told that the independent set problem (Problem [I7) is NP-
hard:

Theorem 20. The independent set problem is NP-hard.

This means that if the P ## NP conjecture holds, there is no polynomial-time algo-
rithm for solving the independent set problem. Neat. Now let’s use this to show that
vertex cover problem is also NP-hard. Recall that this means that there is a polynomial-
time many-one reduction from some known NP-hard problem to the vertex cover prob-
lem. Let’s use the independent set problem, and preface this with a little result about
independent sets and vertex covers in a graph:

Lemma 21. Given a graph G = (V, E), a subset V' C V is an independent set iff
V — V' is a vertex cover.

Proof. First, suppose V' C V is an independent set. Consider an edge {v1,v2} € E.
If V' is an independent set, then either v; € V' or v € V'. So eitherv; € V — V' or
vy € V — V. So for every edge {vy,v2} € E, eitherv; € V. —V'orvy € V — V",
SoV — V' is a vertex cover.

Now suppose V/ C V and V — V" is a vertex cover. Then for every edge {vq, v} €
E,eithervy € V — V' orvy € V — V’/ (or both). So vy and v, are not both in V’. So
V' is an independent set. O

Theorem 22. The vertex cover problem is NP-hard.



Proof. Let A = (G, a) be an instance of the independent set problemﬂ Let G =
(V, E). We perform a polynomial-time reduction of A to the instance A’ = (G, |V |—a)
of the vertex cover problem.

Suppose the solution to A is “Yes”. Then there is an independent set V' C V
of G with [V'| > a and by Lemma 21} the set V' — V" is a vertex cover of G with
|V — V’| < a. So the solution to A’ is “Yes”.

Now suppose the solution to A’ is “Yes”. Then there’s a vertex cover V' C V of
G with |V’ < a and by Lemma[21] the set V' — V"’ is an independent set of G with
[V —-V'| > a.

So the reduction of A to A’ is polynomial-time and many-one reduction from in-
stances of the independent set problem to instances of vertex cover. Then since the
independent set problem is NP-hard (Theorem [20), the vertex cover problem is NP-
hard. O

The vertex cover problem also remains NP-hard if you only consider instances
where the graphs are 3-regular:

Definition 23. A graph is 3-regular provided every vertex has degree 3.

Problem 24 (3-Regular vertex cover). Given a 3-regular graph G and integer a, does
G have a vertex cover of size at most a.?

Theorem 25. The 3-regular vertex cover problem is NP-hard.

6 Set Cover and Covering-Hitting Duality

Let’s leave graphs for a moment and talk about sets.

Definition 26. Given a set U = {1,2,...,n} and a set of sets S = {S1,S2,...,5n}
with each S; C U, a set cover of U is a subset S’ C S such that Usq,eS' S, =U.

Normally the U set is called the universe.

Problem 27 (Set cover). Given a set U, set of sets S with each S; C U, and an integer
a, is there a set cover of U with size at most a?

All T want to observe for now is that there’s a duality between sets and elements of
the universe. Think about each set as an element and each element as a set, where an
element (formerly a set) is in a set (formerly an element) if the former set contained
the former element. Then a set contains an element in the primal if and only if the
corresponding element “hits” (lies in) the corresponding set in the dual. So in the dual,
the set cover problem becomes another problem:

Definition 28. Givena set U = {1,2,...,n} and a set of sets S = {S1,S2,...,Sm}
with each S; C U, a hitting set of S is a subset U’ C U such that for every S; € S,
there exists an element u € U’ such that u € S;.

3The (... ) notation is commonly used to specify an instance of a problem.



Problem 29 (Hitting set). Given a set U, set of sets S with each S; C U, and an
integer a, is there a hitting set of size at most a?

This is because “covering” all the elements in the primal becomes a matter of “hit-
ting” all the sets in the dual.
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Figure 1: A primal instance of set cover (left) and corresponding instance of hitting set
(right).

7 Dominating Set and Set Cover

Set cover is a really classic problem, in part because set cover and its variants are
closely related to many other popular problems (kind of like linear programming,
which we might see later in the semester). Take the dominating set problem for in-
stance. Consider an instance of the dominating set and the possibility of expressing the
instance as an instance of the set cover problem (Figure [2)).
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Figure 2: An instance of dominating set (left) and corresponding instance of set cover
(right). Each set in the set cover instance corresponds to a vertex and its neighbors. For
instance, the set S3 = {1,2, 3,6} corresponds to v at its neighbors v, v, and v.

Any instance of dominating set (specified by a graph G = (V, E')) can be expressed
as a set cover instance with U = {1,2,...,|V|} and S = {{u : {v,u} € E} U{v}:
v € V'}. So the dominating set problem is a special case of the set cover problem. Now
consider the other direction (Figure|3).



Set vertices

Si1% (%% %
So
04 05 .6
_J
° ° °
7 8 9
53 S4 V1 V2 V3 Vg Vs Vg V7 Vg Vg

Universe vertices

Figure 3: An instance of set cover (left) and corresponding instance of dominating set
(right). Each set in the set cover instance corresponds to a set of edges in the dominating
set instance between a set vertex and a set of universe vertices.

Here the correspondence isn’t quite so easy. We make a vertex for each set (called
the set vertices), a vertex for each element of the universe (called the universe vertices),
an edge between each set and every element the set contains (encoding the sets) and an
edge between every pair of set vertices.

Since set vertices are connected in a clique, any vertex is sufficient to dominate
them all. Moreover, putting a universe vertex v in the dominating set is a bad idea,
since selecting a set vertex connected to v covers a superset of those vertices dominated
by v, and the goal is to find a dominating set that is small.

8 Hypergraph Covers and Set Covers

You have likely not seen hypergraphs before:

Definition 30. A hypergraph G = (V, E) consists of a set of vertices V and a set
of hyperedges E. Each hyperedge e € E is a set of vertices e C V. Two vertices
v1,v2 € V are connected if there exists a hyperedge e € E such that v, vy € e.

If each hyperedge in a hypergraph G has the same cardinality k, then G is said
to be k-uniform. Regular graphs are exactly the 2-uniform hypergraphs. Consider the
minimum edge cover problem on hypergraphs:

Definition 31. Given a hypergraph G = (V, E), a subset E’ C E is a hyperedge cover
of G provided that for every vertex v € V, there exists some edge e € E’ such that
v E e

Problem 32 (Hypergraph edge cover). Given a hypergraph G = (V, E) and an integer
a, does there exist a hyperedge cover of G with at most a hyperedges?

Recall that the minimum edge cover problem (on graphs, i.e. 2-uniform hyper-
graphs) has a polynomial-time algorithm where a maximum matching is extended to a
minimum edge cover. What about general hypergraphs? Unfortunately, no.



Theorem 33. The hypergraph edge cover problem is NP-hard.
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Figure 4: A hypergraph G = (V,E), with V. = {vj,v9,...,09} and E =
{{’(}1,1}2,1)3,'[)5},{’1)4,'U5,’U7,’Ug},{’UQ,’U37’U6},{’UG,’08,UQ}}.

Is this obvious? Think about a drawing of a hypergraph (Figure 4), where the
hyperedges are blobs surrounding the vertices that they contain. The hyperedges are
(literallyﬂ) sets, and finding a minimum hyperedge covering means finding the smallest
set of sets so that all vertices belong to at least one set. This is literallyf| the set cover
problem.

Theorem 34. The hypergraph edge cover problem is NP-hard.

Proof. Let (U, S, a) be an instance of the set cover problem, with U = {1,2,...,n},
S = {51,52,...,5n}, and k an integer. Construct an instance (G, a) the minimum
hypergraph edge cover problem in the following way: let G = (V, E), where V =
{vi:ie€eU}and E = {{v; : i € S;} : S; € S}. This can clearly be done in time
linear in the size of (U, S, k).

If the answer to (U, S, a) is “Yes”, then there exists a set cover of size at most a
for U. So there exists a set of at most a hyperedges (those corresponding to the sets in
the set cover), such that every vertex is contained in at least one edge. So there exists a
hyperedge cover of size at most a, and the answer to (G, a) is “Yes”.

If the answer to (G, a) is “Yes”, then there exists a hyperedge cover of size at most
a, such that every vertex is contained in at least one edge. So there exists a set of sets
in .S (those corresponding to the hyperedges in the hyperedge cover) such that every
element of the universe lies in at least one set. So the answer to (U, S, a) is “Yes”. [

Now consider the restriction of the hypergraph edge cover problem where all hy-
peredges have the same bounded cardinality:

Problem 35 (k-uniform hypergraph edge cover problem). Given a k-uniform hyper-
graph G = (V, E) and an integer a, does there exist a hyperedge cover of G with at
most a edges?

This is equivalent to the set cover problem where each set has the same size k. We
have shown this problem for k£ = 2 has a polynomial-time algorithm (Theorem [TT]),

4Using the meaning of “literally” that means “actually true”.
SSame thing.



but what about for more general k? Say, K = 3?7 What’s so special about 2-uniform
hypergraphs, anyway?

Homework 3. Prove that the 3-uniform hypergraph edge cover problem is NP-hard
(hint: use Theorem[23).

And what about the hypergraph vertex cover problem:

Definition 36. Given a hypergraph G = (V, E), a subset V' C V is a vertex cover of
G provided for every edge e € E, there exists a vertexv € V' such that v € e.

Problem 37 (Hypergraph vertex cover). Given a hypergraph G = (V, E) and an
integer a, does there exist vertex cover of G with size at most a?

And what of the complexity of this problem? Observe that the hypergraph vertex
cover problem is equivalent to the hitting set problem, which is equivalent to the set
cover problem, which is equivalent to the hypergraph edge cover problem. That is,
Problem [37] = Problem [29] = Problem 27 = Problem So the hypergraph vertex
cover and hypergraph edge cover problems are equivalent. Keen.
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