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This paper has two purposes. The first is to investigate the charac- 
teristics of a restricted class of Turing machines, and to develop a 
simple tool for describing their computations. The second is to pre- 
sent specific problems for which tight lower bounds can be found for 
the computation times required by Turing machines of this re- 
stricted class. 

I. INTRODUCTION 

In  this paper  we shall consider Turing machines tha t  can, at any 
given step in their computations, do each of the following things: (a) 
change the tape symbols currently scanned by  their reading heads, (b) 
shift each of their tapes one square to the left or right, (c) change their 
internal state, and (d) halt. Each step is assumed to require exactly one 
t ime unit  for its completion. I n  order to investigate the total  t ime re- 
quired to compute a particular function, it is convenient to di-stinguish 
between "on-line" and "off-line" Turing machine computations.  These 
two types of computat ions differ only in the way in which input data  
are supplied to the machine and output  data  are generated by the 
machine. 

In  an on-line computation the input data  are supplied to the machine, 
one symbol at  a time, at a special input terminal. Corresponding to each 
input symbol,  the machine is required to produce, at  a special output  
terminal, an appropriate  output  symbol. In  general the machine will not 
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be able to do this immediately, but must spend a number of time units 
computing the required output symbol. However, a new symbol cannot 
be supplied at the input terminal until the machine has produced the 
output symbol that corresponds to the previous input symbol. Thus each 
output symbol is a function solely of the preceding input symbols. Most 
of the work of Yamada (1962), Hartmanis and Stearns (1965), and 
Rabin (1963) has used the on-line Turing machine model. 

In an off-line computation all of the input symbols are written on one 
of the machine's tapes prior to the start of the computation. The results 
of the computation are obtained only when and if the machine halts, 
and may be taken to be either the pattern of symbols appearing on one 
of the tapes or else the internal state of the machine at the end of the 
computation. In this paper we shall consider only off-line computations, 
and in particular off-line computations having only two possible out- 
comes. These outcomes, represented by the symbols 0 and 1, may be 
thought of as being associated with the final states of the machine. 

All of the tapes used by an off-line machine will be assumed to be 
singly-infinite, having a left end but no right end. This entails no loss of 
computing capability or speed, and is convenient for the analysis that 
is to follow. At the beginning of a computation the input pattern must be 
written at the left end of one of the machine's tapes that is designated 
for this purpose. The input pattern is finite in length, and the remainder 
of the tape squares are left blank. The tape is positioned so that its read- 
ing head scans the leftmost square of the input pattern, and the machine 
is placed in a designated starting state. 

The machine then goes through a series of basic operations, as deter- 
mined by its internal structure. If the machine halts in a state to which 
the output 0 is assigned, it is said to have rejected its input pattern; if 
it halts in a state to which the output 1 is assigned, it is said to have 
accepted its input pattern. If a machine always halts within a finite time, 
regardless of the input pattern with which it is presented, it is said to 
recognize the set of input patterns for which it produces outputs of 1. 
Such a machine may be thought of as classifying input patterns into 
those that are accepted and those that are rejected. 

For the most part we shall be concerned with off-line machines that 
are guaranteed to halt, regardless of the particular input pattern sup- 
plied. The number of basic operations that such a machine requires to 
accept or reject an input pattern will be called the computation time for 
that input pattern. If T(n) is a function such that the computation time 
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associated with every input pattern of n symbols is less than or equal to 
T(n), then the computations of the machine will be said to be bounded 
by T(n). Similarly, the set of input patterns that the machine recognizes 
will be said to be recognizable within T(n) time units. 

This paper investigates the behavior of one-tape, off-line Turing 
machines, with two objectives. The first is to develop a tool for describing 
the computations of such maehines, and the second is to apply that tool 
to the problem of finding good lower bounds for the times required to 
recognize various sets of patterns. Section II  presents the idea of a 
"crossing sequence" and develops the properties of this concept that 
make it an important analytic tool for one-tape, off-line computations. 
Section III  deals with the determination of lower bounds on computa- 
tion times, in particular, Section III, A describes a set of patterns whose 
recognition time must exceed Cln2/log Q, but need not exceed 2 C2n /log Q, 
where C1 and C2 are appropriate constants and Q is the number of in- 
ternal states in the Turing machine that is to recognize the set. Section 
III, B considers more general computation times of the form Kn ~, where 
K and p are real constants. For computation times of this form, the fol- 
lowing result can be established. Given any two real numbers p and q in 
the range 1 _-< q < p -< 2, there exists a set of patterns that can be recog- 
nized within a time proportional to n p, but that cannot be recognized 
within a time proportional to n q, assuming that the recognition is to be 
done by a one-tape, off-line Turing machine. 

II. CROSSING SEQUENCES 

A. DEFINITIONS 

Recall that an off-line computation begins with the pertinent input 
pattern prerecorded on one of the machine's tapes. We now wish to re- 
strict our attention to machines having only one tape. Thus this tape 
must be used not only to record the input pattern, but also to provide 
space for any "scratch work" required in the course of a computation. 
As noted earlier, it is convenient to assume that the tape extends in- 
finitely far to the right, but not to the left. The input pattern occupies a 
finite segment at the extreme left end of the tape, while the remainder of 
the tape is blank. A computation is started with the left-most square of 
the input pattern under the reading head. If desired, this square can be 
marked with a special symbol to keep the machine from inadvertently 
shifting the tape out of the reading head. In the computations to be con- 
sidered in this paper, such a special end marker will not be needed, and 
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will not be provided. To include an end marker would require no im- 
portant changes in the discussion to follow. 

In this paper the words "tape" and "pattern" will be used to denote 
two different things. The word "tape," unless otherwise qualified, refers 
to an infinite string of squares upon which some symbols may be written. 
If it is necessary to refer to a portion of a tape, the words "tape seg- 
ment" will be used. In particular, if t~ denotes a finite segment at the left 
end of a tape, and if tb denotes the remaining infinite segment of the same 
tape, the symbolism "tatb" may be used to denote the entire infinite tape, 
The word "pattern," on the other hand, refers to the string of symbols 
that is written on a tape at a given time. Such a string must always be 
finite in length. For the most part it will be necessary to refer only to the 
pattern that appears on a Turing machine tape at the beginning of a 
computation. Thus we shall speak of an "initial tape" and the "input 
pattern" that it contains. 

When describing the computations performed by a one-tape, off-line 
machine, it is convenient to think of the tape as remaining fixed and the 
control unit, or reading head, as moving back and forth. The zig-zag line 
in Fig. 1 shows a typical path that the head might trace out on its tape 
during the course of a computation. We will usually think of this path as 
being traced out on the input pattern itself, and ignore the manner in 
which the pattern changes during the course of the computation. On the 
other hand, we will be very much interested in the internal state that the 
machine assumes at each step in the computation, and may wish to label 
the path with these states. 

Now consider two adjacent squares on a tape, say those marked x and 
y in Fig. 1, and note the points in the computation at which the head 
crosses the boundary between the two squares. Since every computation 
starts with the head at the left end of its tape, each odd-numbered cross- 
ing between two given adjacent squares must be a crossing from/eft to 
right; similarly, each even-numbered crossing must be from right to left. 
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FIG. 1. The path of a computation 
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Let S( i )  denote the state of the machine at the time of the ith crossing 
between the two squares in question. Then the sequence C = S(1) ,  
S(2) ,  . . .  , S ( i ) ,  . - .  will be called the crossing sequence tha t  the given 

1 Turing machine generates on the boundary between the two squares. 
Informally, this crossing sequence describes the way in which the 
machine "carries information," by  means of its internal states, from one 
side of the boundary to the other. 

Specifying the crossing sequences associated with all of the boundaries 
that  the machine reaches in the course of its computation is equivalent 
to specifying every basic step in that  computation, in  particular the 
total computation time is equal to the total number of crossings that  the 
machine makes. If the number of crossings in a given sequence is re- 
ferred to as the length of that  sequence, then the total computation time 
is equal to the sum of the lengths of all the crossing sequences. Evi- 
dently a machine will halt for a given initial tape iff it generates on that  
tape a finite number of non-empty crossing sequences, each of which is 
of finite length. 

B. BAsic PI~OP]~aTIES 

Although we are primarily interested in machines that  must always 
eventually halt, regardless of the initial tape with which they are pre- 
sented, ]et us temporarily relax this restriction. Then an off-line machine 
can react to an initial tape in three ways: it can halt and accept the tape, 
it can halt and reject the tape, or it can continue computing forever. Two 
initial tapes will be said to be treated identically by a given machine iff 
they are both  accepted, or both rejected, or if they both cause the 
machine to compute forever. 
T~oRm~ 1. Let tat~ be an initial tape consisting of a finite segment t~ , 

followed on the right by an infinite segment tb . Note that t~ need not coincide 
with that portion of the tape that is initially nonblank. Similarly, let t~t~ be 
an initial tape consisting of a finite segment t~ followed by an infinite set- 
ment td . Assume that tatb and t~td are treated identically by a given Turing 
machine M. Let C~ and C2 be the crossing sequences that this machine 
generates on the boundary between t~ and tb, and on the boundary between 
t~ and td , respectively. I f  C1 and C2 are identical, then 

(A) The initial tapes t~tb and t~td must be treated identically by the given 
machine M. 

A crossing sequence corresponds to the notion of a "scheme" used by Rabin 
(1963). 
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(B) In  the computations performed on t, tb and t~td, the crossing se- 
quences generated at corresponding boundaries in the ta portions of the 
tapes must be identical. 

(C) In  the computations performed on tat~ and t~td, the crossing se- 
quences generated at corresponding boundaries in the t~ portions of the tapes 
must be identical. 

In other words, the tc portion of the tape tctd can be replaced by t~ 
without changing the final disposition of the tape or the crossing se- 
quences that appear in the segments ta and t~. Figure 2(a) and (b) shows 
typical paths that a hypothetical Turing machine might trace out on 
tapes t, tb and t~td. If the crossing sequence generated on the boundary 
between t, and tb is the same as that generated on the boundary between 
t~ and t~, as shown, then the computation performed on the tape totd must 
follow the path shown in Fig. 2(c). This picture makes the theorem al- 
most "intuitively obvious," and a rigorous proof will not be given. 

A useful corollary follows almost directly from Theorem 1 : 
ConoI~r~A~Y 1. I f  for an initial tape txt2t3 the crossing sequence that a 

given machine M generates on the boundary between t~ and t2 is identical to 
the crossing sequence that it generates on the boundary between t~ and ta, 
then 

(A) Machine M must treat initial tapes tlt2t~ and tit3 identically. 
(B) Machine M must treat initial tapes t~t2t~ and t~t2t2ta identically. 
In other words, if the same crossing sequence appears on both sides of 

some tape segment, that segment can be removed, and the neighboring 
segments joined together, without affecting the final disposition of the 
tape. Alternatively, an extra copy (or copies) of the given segment can 
be sandwiched in without affecting the final disposition of the tape. 

Proof: Part (A). Let t~, tb, t~, and t~ represent the tape segments ta, 
t2t~, t~&, and t~, respectively. Then t, tb and totd are identical tapes (namely 



O F F - L I N E  TURING MACHINES 5 5 9  

ht2ts) and will certainly be treated identically by M. Thus according to 
the Theorem, t~tb and t, te must be treated identically. But  t~tb = tl&t3 
and t~td = tlta. 

Par t  (B).  Let  t~ = t i t2,  tb = t3, tc = tl and td = &h, and again apply 
the Theorem. Q . E . D .  

Although Theorem I and Corollary 1 are sufficient to establish the 
t ime bounds discussed in the next section, it is worthwhile to investigate 
in greater detail the ideas involved in the theorem. By so doing, we can 
develop a better  understanding of the relationship between the crossing 
sequence concept and the more familiar internal state concept as it is 
applied to finite-state machines. 

Theorem 1 describes a situation in which it is possible to replace a 
segment t~ at the left end of an initial tape t~td by another segment t~ with- 
out affecting the outcome of the computation. Specifically, this can be 
done if there exists a second tape t~tb that  is treated identically to t,td and 
for which the machine generates the same crossing sequence at the right 
end of the t~ segment as it does at the right end of the tc segment. Seg- 
ments such as t~ and t~ that  appear at the left end of a tape will be re- 
ferred to as "left-end" segments. Consider now the relationship that  
must hold between two left-end tape segments h and t2 if t2 can a l w a y s  
be substituted for h ,  regardless of the complete pattern in which the 
latter appears. Evidently such a substitution will be possible only if every 
crossing sequence that  can appear at the end of h can appear at the end 
o f  t2 . 

What  is needed at this point is a precise means of determining whether 
a given finite crossing sequence can appear at the right of a given left-end 
tape segment. This cannot be done by considering all the tapes tha t  con- 
tain the given left-end segment, since in general it would be necessary to 
investigate an infinite number of computations in order to be sure that  a 
given crossing sequence could not  appear at the end of a given segment. 

Instead, for any given Turing machine, f i n i t e  left-end tape segment t, 
and finite crossing sequence, C = S(1) ,  S(2) ,  . . -  , S(X), we may per- 
form the following experiment. 

1. Begin the experiment by  placing the machine in its designated 
initial state and causing it to scan the leftmost square of t. 

2. If, when the machine leaves the right-hand end of t for the i th time 
(i < X) it is in state S ( i ) ,  put  the machine in state S ( i  + 1) and send it 
back onto the rightmost square of t. 

3. If the machine halts within t, or gets stuck in some periodic be- 
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havior within t, or leaves t in such a way that  rule 2 does not apply, stop 
the experiment. 

Evidently such an experiment must terminate within a finite number 
of steps. If at the end of the experiment the crossing sequence developed 
at the right-hand end of t is exactly C, the segment t will be said to sup- 
port the crossing sequence C at its right-hand end. If the length of C is 
odd, t h e n  the experiment ends with the machine outside the segment t. 
In this case C will be called a transient crossing sequence for t. If  the 
length of C is even, then the experiment ends with the machine inside the 
segment t. If the machine halted and produced an output  of 1, the se- 
quence C will be called an accepting sequence for t; otherwise it will be 
called a nonaccepting sequence for t. 

Now suppose that  every finite crossing sequence that  is supported by a 
given left-end tape segment tl is also supported by some other left-end 
segment t2. Furthermore, suppose that  every nontransient sequence 
that  is accepting for tl is also accepting for t2. Then consider any tape in 
which 6 appears as a left-end segment and on which the machine per- 
forms a finite computation. By virtue of reasoning similar to that  of 
Theorem 1, the segment t2 can be substituted for tl without changing the 
disposition of the original tape or the crossing sequences that  appear on 
the portion of the tape to the right of 6 • 

Finally, suppose that  (a) every crossing sequence that  is supported by 
6 is also supported by t2, and vice versa, and (b) every nontransient se- 
quence that  is accepting for 6 is also accepting for 6 ,  and vice versa. 
Then the left-end segments 6 and & can be freely interchanged in any 
finite computation without affecting the outcome of the computation. 
Classifying left-end tape segments according to the crossing sequences 
that  they support and according to which of these sequences are accept- 
ing may thus be thought of as a generalization of the classification of in- 
put strings according to the states to which they take a given finite-state 
machine. 

C. SIMPLE APPLICATIONS 

I t  is now instructive to consider the special case in which the crossing 
sequences generated by a given n'lachine never exceed a certain length, 
say K. In other words, the machine never spends more than K time units 
in any one square of its tape. Loosely speaking, if a machine never visits 
any tape square more than K times, there is only a finite number of 
different sequences of things that  it can "do" in any one square. Further- 
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more, there is only a finite number of distinct subsets of these sequences. 
If the subset of sequences that the machine might generate in a given 
square is known, then the subset of sequences that it might generate in 
the next square to the right can be determined. Therefore the machine 
might just as well be designed to visit each square just once, working 
from left to right, and to keep track of the corresponding subsets of 
sequences as it goes. This line of reasoning suggests the following 
theorem: 

THEOREM 2. I f  every crossing sequence in every computation performed 
b9 a given one-tape, off-line Turing machine contains at most K members, 
then there exists a finite-state machine that recognizes precisely the same set 
of input patterns as the given Turing machine. 

Proof: The proof is accomplished by showing that the set of patterns 
that the given machine recognizes can be represented as the union of a 
number of classes of a finite, right-invariant equivalence relation. 

For any given Turing machine, and for any given finite value of K, 
there is at most a finite number of distinct crossing sequences whose 
length does not exceed K. Furthermore, the number of subsets of these 
crossing sequences is finite. Every finite left-end tape segment can then 
be classified according to the crossing sequences of length K or less that 
it supports at its right-hand end, and according to which of these se- 
quences are transient, which are accepting, and which are nonaceepting. 

Now suppose that two finite left-end segments, h and t2, belong to the 
same class, as just described. Then consider any left-end tape segment of 
the form ht~, where t~ is finite, and determine the crossing sequences of 
length K or less that it supports. Evidently any crossing sequence that 
is supported by ht~ will Mso be supported by t~t~ and vice versa, since in 
the experiment described in Section II, B t,, can be replaced by t2 without 
changing the crossing sequences in the tx portion. Furthermore, any non- 
transient sequence that is accepting for ht~ will also be accepting for t2t~, 
and any nontransient sequence that is nonaccepting for ht~ will also be 
nonaccepting for t2t~. Thus t~t~ and t2t~ fall in the same class of left-end 
tape segments. Since this is true for any t~, the classification described 
above is a finite, right-invariant equivalence classification. 

We must now show that the set of acceptable 'input patterns is com- 
posed of the union of a number of the equivalence classes. Suppose that 
pattern p is accepted by the given Turing machine. That is, when p ap- 
pears at the left end of a tape, followed by an indefinitely long segment of 
blank tape, that tape is accepted by the machine. If q is another pattern 
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that falls in the same equivalence class as p, then q must also be accepted 
by the machine, for we have seen that members of a given equivalence 
class can be interchanged without affecting the disposition of a tape in 
which they appear as left-end segments. Therefore if one member of a 
certain equivalence class is acceptable, every member of that class must 
be acceptable. Similarly, if one member of a certain class is not accept- 
able, then no member of that class is acceptable. I t  follows that the set 
of acceptable tape patterns must be composed of the union of certain of 
the equivalence classes. This in turn implies that the set of acceptable 
patterns can be recognized by a finite-state machine. Q . E . D .  

Theorem 2 states that if a certain Turing machine never spends more 
than a fixed number of time units on any one square of its tape it can be 
replaced by a finite-state machine. Next suppose that the maximum 
time that a machine spends in each square is not limited, but that the 
average time per square of the input pattern is limited. In other words, 
suppose that the machine is guaranteed to complete its computations 
within Kn time units, where n is the length of the input pattern. In such 
a case, the machine may generate very long crossing sequences at some 
boundaries, as long as it generates enough short sequences elsewhere. 
Nevertheless, it is possible to show that any Turing machine of this type 
can also be replaced by a finite-state machine. 

Before proving this fact, note that we may safely restrict our attention 
to Turing machines that never leave the input portions of their tapes. 
For suppose that ell is a machine that completes all of its computations 
within Kn time units. Such a machine certainly does not visit more than 
(K - 1)n squares of blank tape. Now design a new machine M', whose 
tapes are divided into K levels, or "tracks," as shown in Fig. 3. The sym- 
bols that may appear in the squares of the new tapes represent ordered 
combinations of K of the symbols from the original tapes, one symbol 
for each track. 

The top track of each new tape is used to record the input pattern, 
while the remaining K - 1 tracks account for the (K -- 1)n squares of 
blank tape that machine M might use. The machine M' starts out by 
working only with the symbols that appear in the top track of its tape, 
behaving exactly as M would at the beginning of its computation. How- 
ever, if M should move off the input portion of its tape onto the blank 
portion, M' turns around and works backwards on the second track of 
its tape. If M should move beyond the nth square of blank tape, M' 
simply turns around again and works toward the right on the third track 
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of its tape. In effect, the blank portion of the tape from machine M has 
been folded, in zig-zag fashion, onto the input portion of the tape. Al- 
though the details will not be given, it should be clear that it is always 
possible to design a machine M' that recognizes the same set of input 
patterns as the given machine M. 

T~EOu~M 3. I f  a one-tape, off-line Turing machine performs all of its 
computations within the time bound T(n) = Kn, where K is a constant, 
then there exists a finite-state machine that recognizes precisely the same set 
of input patterns as does the given Turing machine. 

Proof: The proof consists in showing that if the total computation 
time is limited by Kn, then the time spent in any one square must be 
limited by 2KQ :~ ÷ K, where Q is the number of internal states. The 
desired conclusion then follows immediately from Theorem 2. 

Assume that the given Turing machine has been constructed in such a 
way that it never leaves the input portions of its tapes, and that it has 
Q internal states. Then suppose that in the process of performing its 
computation on some input pattern the machine does generate a crossing 
sequence whose length is greater than 2KQ K + K. In particular, let no 
be the shortest input pattern length for which such a "long" crossing 
sequence is generated. 

Now choose some input pattern of length n0 for which a long crossing 
sequence is generated and examine the computation that the given 
machine performs on this pattern. Let s denote the number of crossing 
sequences in this computation that are shorter than K. Recalling that 
the total computation time T is equal to the sum of the lengths of all the 
crossing sequences in the computation, we have: 

Kno > T(no) > 2KQ ~ + K + ( n o -  1 -  s)K 

Solving for s gives 
s > 2Q ~ 
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But the number of distinct crossing sequences whose length is less than 
K is 

K--1 

i ~ l  

since the given machine has only Q states. Therefore among the more 
than 2Q K boundaries that have "short" crossing sequences, there must 
be at least three that have identical crossing sequences. Call these bounda- 
ries bl, b2, and ba, and call the boundary on which the "long" crossing 
sequence appears b0. 

At least two of the boundaries bl, b2, and bs must lie on the same side 
of b0 • Suppose that bl and b2 are so located, as shown in Fig. 4. Now form 
a new input' pattern by removing the portion of the original pattern 
between bl and b~ and joining the end pieces together. According to Cor- 
ollary 1, the crossing sequences that the given machine generates in per- 
forming its computation on the new tape must be identical to the cross- 
ing sequences that it generated at corresponding boundaries on the old 
tape. In particular, since b0 lay outside the portion of the old tape be- 
tween bl and bs, the computation on the new tape will contain a crossing 
sequence whose length exceeds 2KQ ~c q- K.  

The length of the new pattern is certainly less than no. But no was 
determined to be the shortest length of an input pattern for which such a 
"long" crossing sequence is generated. Therefore the assumption that 
some finite input pattern yields a crossing sequence longer than 2KQ K q- 
K leads to a cont.radietion and must be false. Consequently no crossing 
sequence generated by the given machine is longer than 2KQ ~ q- K,  

REMOVE 

• 1t21 
bl 

i' 1llt 1 '̧{' 
b3 

b o 

Fro. 4. I l lustrat ion of Theorem 3 
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regardless of the particular finite input pattern supplied to the machine. 
Then according to Theorem 2 there must exist a finite-state machine that 
recognizes the same set of input patterns as the given Turing machine. 

Q . E . D .  
Restating Theorem 3 slightly gives the following interpretation. 

Suppose that a certain set of input patterns can be recognized by a one- 
tape, off-line Turing machine that completes each of its computations in 
a time that is directly proportional to the length of the particular input 
pattern supplied. Then the same set of patterns can be recognized by a 
one-tape, off-line Turing machine that completes each of its computa- 
tions in a time that is exactly equal to the length of the pattern supplied. 
This latter Turing machine simply moves from left to right across its 
tape, behaving like a finite-state machine. Thus no increase in the com- 
putational capabilities of one-tape, off-line Turing machines is achieved 
by increasing the allowed computation time from n to Kn. 

It is interesting to compare this result with related results for other 
computing situations. Using the techniques of Hartmanis and Stearns 
(1965) it is possible to show that if a certain set of patterns can be recog- 
nized by a one-tape, off-line Turing machine that completes its computa- 
tions within time K T ( n ) ,  then it can also be recognized by a machine 
that completes its computations within time T ( n ) , provided T ( n ) > n 2. 
In other words, if the computation time is large enough to begin with 
(greater than n2), increasing the computation time by a multiplieative 
factor does not increase the computational capabilities of a one-tape, 
off-line machine. I t  seems reasonable to conjecture that this is true for all 
functions T(n) .  However, the notion of a crossing sequence does not 
seem to be useful in establishing this result for T(n )  greater than n, and 
the methods of Hartmanis and Stearns do not seem to be useful for 
T(n)  less than or equal to n 2. At present, then, it is not known whether 
increasing the computation time from T(n)  to K T ( n )  increases the 
capabilities of a one-tape, off-line Turing machine when T(n)  lies in the 
rangen 2 > T ( n )  > n. 

5~Iatters are slightly different for two-tape, off-line machines. Again, 
going from T(n )  to K T ( n )  does not increase computational capabilities 
so long as T(n)  > n ~. However, going from n to Kn apparently does in- 
crease the computational eapabiiities of two-tape, off-line machines. 
Exactly where in the range from n to n 2 the use of a multiplicative con- 
stant ceases to make a difference is not yet known, but it is clear that the 
addition of a second tape does change the computational characteristics 
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of an off-line machine. Further understanding of the differences between 
one- and two-tape machines will be developed in the next section. 

III. TIME BOUNDS FOR ONE-TAPE, OFF-LINE COMPUTATIONS 

A. TH~ R~COG~ITION OF SaT S 

We now consider the problem of determining upper and lower bounds 
on the time required to recognize certain sets of input patterns on one- 
tape, off-line machines. We shall first exhibit a set of patterns for which 
the minimum computation time, T(n), can be shown to lie in the range 
Cln2/log Q <= T(n) <= C2n2/log Q, where n is the length of the input 
pattern and Q is the number of internal states of the machine that per- 
forms the computation. Thus for this particular set of patterns the 
optimum computation time grows as n 2, and can be determined within a 
multiplicative constant. Appropriate modifications of this set lead to sets 
whose optimum computation times grow as other powers of n in the 
range between 1 and 2, and whose optimum computation times can also 
be determined within multiplicative constants. 

The patterns to be discussed in this section are based on the alphabet 
10, 1, 2}. It is convenient to think of such patterns as being composed 
of blocks of O's and l's, separated by blocks of 2's. Thus the pattern 
010112022201022 contains a total of six blocks. Now let the set S be 
defined as the set of patterns on the alphabet {0, 1, 2} that satisfy each 
of the following conditions: 

i. The pattern consists of exactly three blocks: a block of 0's and l's, 
followed by a block of 2's, followed by a block of 0's and l's. 

2. The lengths of the three blocks are equal 
3. The pattern of O's and l's appearing in the first block is identical 

to the pattern of O's and l's appearing in the third block. 
Thus 020, 110222110, and 001102222200110 are members of S, while 

002, 1122110, 1212, and 010222011 are not. 
It is not difficult to design a one-tape, off-line Turing machine that 

recognizes the set S. Perhaps the most natural approach is to have the 
machine make a series of passes across the input pattern from left to 
right. On each pass the machine compares one symbol in the first block 
with the corresponding symbol in the third block, and "checks off" one 
symbol in the second block. In this way the machine will eventually 
determine whether the pattern consists of three equal-length blocks, and 
whether the first and third blocks contain identical patterns. 

The total time required for such a computation is equal to the product 
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of the number of passes and the number of steps per pass. If the input 
pattern is acceptable, each pass requires a round-trip travel time of } n 
steps, and n / 3  passes must be performed. Thus we might expect the 
total computation time to be about ~ n 2. Actually, a slightly longer time 
may be required to handle certain nonaceeptable input patterns. Al- 
though the construction will not be given, there is an eight-state off-line 
machine that recognizes the set S by means of the procedure described 
above. This machine can be shown to complete its computations within 
the time T ( n )  = ~n 2 q- n. 

Faster computations will result if the machine is designed to compare 
two or more symbols from the first and third blocks during a single pass. 
In particular, if/~ symbols are compared on each pass, the number of 
passes--and hence the total computation time--will be ~pproximateIy 
divided by/~. Such a scheme will, of course, require extra internal states. 
Without going into details, we may simply note that/c symbols can be 
compared on each pass by a machine that uses at most (/c q- 1)2 ~+1 states. 
The corresponding computation time can be shown to be at most 

2n 2 
- -  q- 4n (for Q => 8) 
log Q 

where Q is the total number of internal states and the logarithm is taken 
to the base two. Thus the set S can be recognized by a one-tape, off-line 
Turing machine within a computation time whose growth for large n is 
directly proportional to n 2 and inversely proportional to log Q, the num- 
ber of bits of internal memory. 

Let us now try to find a good lower bound for the fastest possible 
computation time, in terms of the number of states and the length of the 
input pattern. Suppose that we are presented with a one-tape, off-line 
Turing machine that has Q internal states and does in fact recognize the 
set S. In the discussion to follow we shall consider only the acceptable 
input patterns of some arbitrarily chosen length n, where n is a multiple 
of three. There are, of course, exactly 2 "/a such patterns. For each of 
these patterns the machine will go through a well-defined computation, 
generating a finite crossing sequence at each of the n - 1 boundaries 
within the pattern. Which of these crossing sequences must be distinct, 
and which may be identical? 

Since we are eonsidering only acceptable patterns, Theorem 1 and 
Corollary 1 imply that two crossing sequences can be identical only if 
the result of joining the tape segment on the left of one crossing sequence 
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to the tape segment on the right of the other is to form another accept- 
able pattern. A little thought shows that this will happen only if the 
two crossing sequences appear at corresponding positions within the 
first (or third) blocks of two different computations, and if the patterns 
appearing to the left (right) of the two sequences are identical. In such a 
case, cutting the two initial tapes at the boundaries in question and 
swapping their left (right) ends does not change the patterns at all. For 
any other locations of the two crossing sequences, cutting the initial tape 
or tapes at the boundaries involved and rejoining the ends will yield at 
least one nonaeceptable pattern. Hence the crossing sequences that ap- 
pear on such boundaries must be distinct. 

In particular, a]l of the crossing sequences that appear on boundaries 
within the center blocks of acceptable patterns of length n must be dis~ 
tinct. For if we consider two boundaries within the center block of the 
same pattern, removing the segment between the boundaries would re- 
sult in a pattern without enough 2's to be acceptable. If we consider two 
boundaries within the center blocks of different patterns, swapping ends 
will result in a pattern in which the first and third blocks do not match. 
If the crossing sequences on the two boundaries were identical, either 
Corollary 1 or Theorem 1 would be violated. 

We can now use this fact to derive a lower bound on the maximum 
time that the given machine must spend on some acceptable pattern of 
length n. Because the argument to be used does not take into considera- 
tion the crossing sequences that appear in the first and third blocks, it 
cannot be expected to yield the best possible bound. However, considera- 
tion of all the crossing sequences requires a rather lengthy argument and 
results in an improvement of only a factor of two in computation time. 

Let s denote the number of distinct crossing sequences whose length 
does not exceed X = (n/3 log Q) - 1, where again Q is the number of 
states in the given machine and the logarithm is taken to the base two. 
Note that the number of distinct crossing sequences of length one is Q, 
the number of length two is Q2, and so on. Therefore 

X 

s = ~ Q~ < @+1 = Q~/31og~ _ 2~/8 (for Q ~ 2) 
i=1 

But the number of acceptable patterns of length n is exactly 2 "/~, which 
is greater than s. Since no one crossing sequence can appear in the center 
portion of two different computations, we see that there are not enough 
of the "short" crossing sequences to have one in the center portion of 
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each computation. Tha t  is, there must be some computation performed 
on an acceptable pat tern of length n for which the length of every cross- 
ing sequence in the center portion exceeds X. 

The amount  of time that  the given machine must spend on this one 
computation is equal to the sum of the lengths of the crossing sequences 
that  appear in that  computation. In particular, the amount  of time the 
machine spends in the center block of the pattern is at least (n/3) (X q- 1), 
since there are n/3 boundaries in this block and each must have a cross- 
ing sequence of length X -t- 1 or more. Thus the total computation time 
is at least n~/9 log Q. 

If all the crossing sequences in the computations performed on accept- 
able patterns of length n are taken into account, this lower bound can be 
doubled. Thus if n is a multiple of three, there must be some acceptable 
pattern of length n upon which the machine spends at least 2n2/9 log Q 
time units. In conclusion, if the set S is to be recognized by a (?-state, 
one-tape, off-line Turing machine, then the associated computation time 
must exceed 2n2/9 log Q when n is a multiple of three, but  need not 
exceed (2u2/iog Q) -4- 4r~. In particular, for q = 8, the computation 
time must exceed 2n2/27, whereas we know that  it is possible to con- 
struet an eight-state machine whose computation time does not exceed 
12r~/27 q- n. Thus for large n the optimum computation time of an 
eight-state machine has been determined within a factor of six. 

I t  is instructive to t ry  to determine, at least on art informal basis, why 
the upper and lower bounds differ by as much as a factor of six. In order 
to do this, it is appropriate to think of the task of a one-tape machine as 
that  of carrying data back and forth across the various boundaries of its 
tape. The shorter the computation time is to be made, the more data 
each individual member of a crossing sequence must carry. Of course, 
fixing the number of internal states also fixes the maximum "amount"  of 
data  that  can be transported by  a single crossing sequence member. If 
the shortest possible computation time is to be achieved, each crossing 
sequence member must  be used to its full capacity. Tha t  is, for any 
choice of an internal state and integer i, it must be possible to find a 
crossing sequence in which the given state appears in the ith position. 

Returning to the method described above for recognizing the set S, we 
see that  the members of the crossing sequences are not being used at 
their fullest data-carrying capacity. In particular, whenever the machine 
moves from right to left, it is simply returning from the completion of 
one pass to the starting point of the next, and is carrying almost no useful 
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information. Thus the data-carrying capacity of all the even-numbered 
crossing sequence members is almost entirely wasted. From this fact 
alone we would expect the computation time required by the present 
method to be about twice that given by the lower bound. 

The efficiency of the realization is further reduced by other "inter~ 
symbol" constraints that the machine imposes on its crossing sequences. 
These other constraints arise primarily from the machine's need to keep 
track of which block of the input pattern its reading head is currently 
scanning. Thus the machine's "housekeeping" duties interfere with its 
primary job of transporting information about the input pattern, and 
this interference substantially reduces the machine's computing effi- 
ciency. The only way of combating this problem is to change the method 
used to recognize the set S. With a modified computing scheme and a 
greatly expanded tape alphabet, it is possible to design an eight-state 
machine that comes within about a factor of two of achieving the com- 
putation time given by the lower bound. Thus, in this particular example, 
a relatively high data-carrying efficiency can be obtained, and the lower 
bound previously given is a relatively good one. 

It  must be remembered, however, that the argument used to obtain 
the lower bound on computation time does not take into account the fact 
that the crossing sequences involved will have to be generated by a one- 
tape Turing machine. Since the Taring machine model itself imposes 
constraints on the crossing sequences that can appear in a given com- 
putation, arguments similar to those of this section cannot be expected 
to lead to good lower bounds for all recognition problems. 

The problem of recognizing the set S is interesting for several reasons. 
First, it illustrates the application of the crossing-sequence concept to the 
problem of determining minimum computation times. Second, it pro- 
vides a specific example of a computing problem for which reasonably 
close upper and lower time bounds can be obtained. Third, it provides 
some insight into the relationships among crossing sequences, particular 
computing schemes, and the "efficiencies" of these schemes. Finally, it 
provides information about the relative speeds of one- and two-tape 
machines, as discussed below. 

We next consider the problem of designing a two-tape, off-line Turing 
machine that recognizes the set S. Such a machine is to begin its compu- 
tation with the input pattern written on one of its tapes, called the input 
tape. The second tape, called the extra tape, is to be compIetely blank at 
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the beginning of the computation. One simple way of carrying out the 
desired computation consists of the following three steps: 

Step 1. The machine moves both its tapes from right to left, copying 
the first block of the input pattern onto the extra tape. The total time 
required for this step is equal to the length of the first block. 

Step P. The machine continues to move the input tape from right to 
left but now moves the extra tape from left to right, so that it passes 
back over the pattern that it has just recorded on that tape. In this way 
the machine is able to compare the length of the second block (on the 
input tape) with the length of the first block (on the extra tape). If these 
lengths are not the same, the computation is immediately stopped. If the 
lengths are the same, the machine will end up scanning the first symbol 
of the third block on the input tape, and the first symbol of the first 
block on the extra tape. In any event the time required for this step will 
not exceed the number of symbols in the second block of the input pat- 
tern. 

Step 8. The machine moves both tapes from right to left, comparing 
the pattern that appears in the third block (on the input tape) with the 
pattern that appears in the first block (on the extra tape). The time re- 
quired for this step will not exceed the number of symbols in the third 
block of the input pattern. Thus if n is the length of the entire input 
pattern, the total time required for the computation is at most n, and 
the computation time is certainly bounded by the function T(n) = n. 

The present example is one for which the fastest computation time 
that can be achieved with a one-tape, off-line machine is necessarily pro- 
portional to the square of the fastest computation time that can be 
achieved with a two-tape, off-line machine. On the other hand, we know 
from the work of Hartmanis and Stearns (1965) that if a given two-tape 
machine completes its computations within T~(n) time units, there must 
exist a one-tape machine that completes its computations within 
C[T1(n)] 2, where C is a constant. In other words, going from a two-tape 
machine to a one-tape machine need never require more than a squaring 
of the computation time. But we now have an example in which the 
squaring is necessary. Thus the I-Iartmanis-Stearns "square law" cannot 
be improved upon in general. 

B. GROWTH RATES FOR OTHER SETS 

The set S provides an example of a recognition problem whose compu- 
tation time necessarily grows in proportion to n 2, and for which a compu- 
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tation time that  grows in proportion to n 2 can be realized. Thus we 
may think of n 2 as the "growth rate" associated with the recognition of 
S by a one-tape, off-line Turing machine. In this section we shall briefly 
consider recognition problems with other growth rates, in particular 
growth rates of the form n p, where p is a rational number between one 
and two. 

As a first example, we will examine a set of input patterns whose recog- 
nition time grows as n 3/2. This set is similar to the set S, the essential 
difference between the two lying in the relative lengths of the three 
blocks. The new set, designated set R, consists of just those patterns that  
satisfy each of the following conditions: 

1. The pattern consists of exactly three blocks: a block of O's and l's, 
followed by a block of 2's, followed by a block of O's and l's. 

2. Let n denote the length of the entire pattern and let x denote the 
length of the first block. Then 

(A) x is a power of 2, and 
(B) n equals x 2. 
3. The patterns that  appear in the first and third blocks are identical 

(which implies that  the first and third blocks have the same length). 
Thus the pattern 0111222222220111 belongs to the set R, while 

011122220111 does not, because its entire length is not equal to the 
square of the length of its first block. 

The set R may conveniently be recognized by a machine whose compu- 
tations consist of two consecutive stages. In the first stage, the machine 
determines whether conditions 1 and 2 are satisfied; in the second stage 
it determines whether condition 3 is satisfied. Condition 1 can be checked 
very simply by making a single pass across the tape, which requires only 
n time units. Condition 2(A) is equivalent to requiring that  log x be an 
integer, while condition 2(B) is equivalent to requiring that  log x = ½ 
log n. The machine will therefore be designed to check condition (2) by 
computing the logarithms of x and n. 

A machine can compute the integer part of the base-two logarithm of 
the length of a block of tape by making a series of passes across that  
block. On each pass it "marks"  with some special symbol the first, third, 
fifth, etc. previously unmarked squares, as illustrated in Fig. 5. The 
number of passes required to mark all the squares will then be one 
greater than the integer part of the logarithm of the length of that  block. 
Furthermore, the length of the block will be a power of two (and its 
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FIG. 5. Method of determining logarithms 

logarithm will be an integer) iff the rightmost square in the block is the 
last square to be marked. 

In  order for a machine to determine whether condition 2 is met, it 
must  carry out two marking operations, one on the entire pat tern,  the 
other on the first block alone. These two operations can be distinguished 
by  the use of different marking symbols. I t  is most convenient  to design 
the machine so tha t  it makes two passes across the entire tape for each 
pass across the first block. Then condition 2 will be met  iff the two mark= 
ing operations are completed on the same pass, and in each case the last 
symbol is not marked until the last pass. Each pass requires at  most  2n 

t ime units, and the max imum number  of passes required is proportionM 
to the logari thm of n. Thus the total t ime needed to check conditions 1 
and 2 is at  most  aln log n, where al is a constant. 

Finally, condition 3 can be checked in a manner  similar to tha t  used in 
the recognition of S. The machine again makes a series of passes across 
the tape, on each pass comparing one symbol in the first block with one 
symbol in the third block. The t ime required for a single pass is less than 
2n, while the number  of passes is x = n~% Thus the t ime required to 
check condition 3 is less than 2n sl2, and the time required for the entire 
computat ion is less than 2n s/2 + ~ n log n, which in turn is less than 
a2n . In  other words, the set R can be recognized within a computat ion 
t ime tha t  grows only as fast as n a~2. 

T h a t  a growth rate  of n s/2 is necessary for the recognition of R can be 
established by  a technique similar to tha t  used in the preceding section. 
I f  we are not concerned with the actual constant of proportionality, it is 
sufficient to consider only the crossing sequences tha t  are generated in 
the center blocks of the acceptable pat terns  of length n. Note  tha t  there 
are exactly 2 ~ ~2 different acceptable pat terns  of length n (assuming n to 
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be a power of four).  On the other hand, the number  of distinct crossing 
sequences whose lengths do not exceed ~ = (nit ' / log Q) - 1 is 

# 

Q~ < Q,+I = 2~1,2 (for Q > 2) 

Thus there are not as many  "shor t"  sequences as there are computat ions 
and some computat ion must  have only crossing sequences of length 
greater than  ~ in its center block. Since the number  of boundaries in the 
center block is a t  leas t  1/~n, the total  t ime required for this computat ion 
is at  least 

T(n) = (u + 1) n _ n 312 
2 2 log Q 

In  other words, for any fixed number  of states, the computat ion t ime 
required to recognize the set R must  grow in proportion to n 3/~. 

The  definition of set R can now be modified so as to describe sets hav-  
ing different growth rates in the range from n to n 2, exclusive. The follow- 
ing conditions define a set of pat terns whose associated growth rate  is 
n 1+~/~, where q and r are integers and q is less than r. 

1. Each pa t te rn  consists of exactly three blocks: a block of O's and 
l 's ,  followed by  a block of 2's, followed by  a block of O's and l 's .  

2. Let  n denote the length of the entire pa t tern  and let x denote the 
length of the first block. Then 

(A) x is a power of 2 q, 
( g )  x = r~ ~/~. 

: 3. The pat terns  tha t  appear  in the first and third blocks are ident ical  
A machine tha t  recognizes such a set can be designed in much the same 

way as the machine tha t  recognizes R. As before, condition 1 is quite 
easy to check. Conditions 2(A) and 2(B)  together are equivalent to re- 
quiring tha t  

i log x = I log n -- integer 
q r 

Therefore when the machine computes the logarithms of x and n it should 
make a series of r passes across the entire pattern,  followed by  a series of 
q passes across the first block, followed by  a series of r passes across the 
entire pattern,  etc. Condition 2 will then be met  iff 

(a) The marking operation for the entire pat tern  is completed on the 
first pass after some integral number,  k, of series of r passes. 
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(b) The marking operation for the first block is completed on the first 
pass after the same integral number k, of series of q passes. 

(c) The last step of each marking operation is the marking of the last 
square in the appropriate tape segment; i.e., both log x and log n are 
integers. 

Condition (3) can be checked in the usual manner. The total computa- 
tion time is at  most 

~4n log n + asn(n q/r) < a6n l+qjT 

Tha t  a growth rate of n 1+q/~ is necessary for the recognition of the given 
set can be shown by arguments similar to those used for the set R. 

C. GENERAL RESULTS 

The  results developed in the preceding two sections can be sum- 
marized in: 

T~EO~EM 4. For any rational number p in the range 1 < p <= 2 there 
exists a set of input patterns Sp such that 

( a ) Sp can be recognized within a computation time that is less than 
Cl(p, Q)n ~, and 

(b) Sp cannot be recognized within a computation time that is less than 
C2(p, Q)n p 
where C1 and C2 are functions only of p and the number of internal states 
available for the computation. 

CO~OLLAaY 4. I f  p and q are two real numbers in the range 1 <= q < 
p _-< 2, then there exists a set of input patterns that can be recognized within 
a computation time that is proportional to n p, but that cannot be recognized 
within a computation time that is proportional to n q. 

Proof: First choose r to be a rational number such that  q < r < p. 
Then according to Theorem 4 there must exist a set of pat terns that  can 
be recognized within C1 (r, Q)n ~ t ime units, but  that  cannot be recognized 
within C2(r, Q)n ~ t ime units. Since Cl(r, Q)n ~ < Cl(r, Q)n ~, this set can 
certainly be recognized within a computation time that  is proportional 
to n p. Now assume that  there exists some Q-state machine that  recog- 
nizes the same set within Cn q t ime units. But  for sufficiently large n, 
Cn q < C2(r, Q)n ~, contradicting the assumption. Thus the set cannot be 
recognized within a computation time that  is proportional t o  n q. 

Q . E . D .  
As pointed out before, it seems reasonable to conjecture that  if a cer- 

tain set of input patterns can be recognized by  a one-tape, off-line Turing 



576 ttENNIE 

machine within a computation time K T ( n ) ,  then it can also be recog- 
nized within the computation time T(n), provided T(n)  >= n. In other 
words, it seems reasonable to suppose that any computation can be 
speeded up by a constant factor through the use of additional internal 
states. According to Theorem 4, however, this is the best speed-up that 
can be obtained for an arbitrary recognition problem, at least in the 
range of computation times from n to n 2. 

Furthermore, the allowable computation time need not be increased 
very much in order to provide one-tape, off-line machines with the ability 
to recognize new sets. According to Corollary 4, increasing any time 
bound of the form uP(1 N p < 2) by a factor of n~(e > 0) increases the 
computing capabilities of one-tape machines. Thus the hierarchy of com- 
plexity classes (Hartmanis and Stearns, 1965) is very densely packed, at 
least in the range from n to n ~. 

IV. CONCLUSION 

Crossing sequences provide a convenient means of describing the man- 
ner in which a one-tape, off-line Turing machine carries "information" 
from one part of its tape to another. Their role may be compared with 
that  of the internal states of a finite-state machine. The occurrence of a 
particular state in a finite-state machine specifies the one class, out of a 
finite number of classes, that contains the input sequence that the 
machine has received so far. The occurrence of a particular crossing 
sequence in the computation performed by a Turing machine specifies 
two classes: one that contains the portion of the initial tape pattern that 
ties to the left of the sequence, and one that contains the portion of the 
initial tape pattern that lies to the right of the sequence. In each case, 
the specification is of one class out of an infinite number of classes. 
' Thus both internal states and crossing sequences provide some in- 
:formation about the input pattern with which their respective machines 
~are supplied. Whereas the internal state supplies information only about 
'the pattern that appears on one "side" of its point of occurrence (the 
past), the crossing sequence supplies information about the patterns 
that appear on both sides of its point of occurrence. Furthermore, the 
s~ate of a finite-state machine can denote only a finite number of classes 
Of past hlstories, while the crossing sequences of a Turing machine can 
d6note an infinite number of pairs of classes of patterns. 

When working with finite-state machines, it is often possible to con- 
clude that two specific input sequences must lead the machine to different 
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internal states in order that the machine behave properly in the future, 
In much the same way, it is often possible to conclude that the crossing 
sequences that appear at specific points in one or more computations 
must be distinct in order that the Turing machine that produces thelr~ 
behave properly for all possible input patterns. The knowledge that  the 
states that result from certain input sequences must be distinct enables 
us to place a lower bound on the number of states required by a finite~ 
state machine. The knowledge that certain crossing sequences must be 
distinct similarly enables us to p!aee a lower bound on the time required. 
by the computations of a one-tape Turing machine. Unfortunately, such 
a bound is not usuM]y as easy to obtain as the analogous bound on the 
number of states of a finite-state machine. 

The time bounds arrived at through consideration of crossing se~ 
quences are not necessarily very close ones. There are two reasons f0~ 
this. First, it is not always feasible to take into account all the distinc= 
tions that must exist among the various crossing sequences that a given 
Turing machine generates. Thus it may be necessary to ignore part of. 
the machine's task when deriving a lower bound on the computatio~ 
time. Second, the arguments used to obtain the bounds assume that the 
machine uses its crossing sequences to carry "information" at maximum 
efficiency. In practice, this is not always possible, either because the, 
machine must return "empty-handed" from some remote portion 0 f i t s  
tape, or because it must spend considerable time organizing, or encoding, 
the data to be transmitted into a form in which it can be used in another 
part of t he  tape. 

I t  is this last problem, that of encoding data into a usable format, that 
prevents the concept of a crossing sequence from being very useful for 
problems that require computation times greater than n 2. For consider 
the extreme ease in which all the crossing sequences in all the computa- 
tions performed on all the input patterns of length n or less must be disz 
tinct. Even in this case, the arguments used in the preceding sections 
require an average computation time that grows only as fast as n 2. This 
is the maximum growth rate required, under ideal conditions, to dis- 
tribute to each tape square complete information abou~o the symbols 
initially appearing in every other tape square. The catch is, of eourse, 
that simply distributing this data is not enough. It must be supplied in 
such a form that it can be correctly interpreted by the machine at the 
point at which the decision concerning acceptance or rejection is made. 
Since this decision must be made by what amounts to a finite-state 
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mechanism (whose inputs are the states of the Turing machine and 
whose internal states are the tape symbols), the format of the crossing 
sequences is often severely constrained. In such cases the crossing se- 
quences may need to be much longer than the length dictated by data- 
transmission considerations alone, and the total computation time may 
need to be much greater than that dictated by the arguments of Sec- 
tion III.  

Although the idea of a crossing sequence can be extended to apply to 
off-line machines with two tapes, it does not seem to be useful for ob- 
taining time bounds for such machines. Perhaps the most appropriate 
way of regarding the computations of a two-tape machine is to think of 
the reading head as moving in a plane, the coordinates of a point in this 
plane indicating the location of the head on each of the two tapes. I t  is 
then possible to define a crossing sequence as the sequence of internal 
states in which the machine enters and leaves a given square in the 
plane. Unfortunately, there seems to be no direct counterpart of Theorem 
i or Corollary I that applies to the planar situation, and hence the entire 
method of finding lower bounds falls apart. 

I n  spite of its limited range of application, the concept of a crossing 
sequence can be used to obtain strong results about certain Turing 
machine computations. Indeed, the class of one-tape, off-line Turing 
machines is one of the few classes of Turing machines for which such 
strong statements as Theorem 4 can be made. Most important, this class 
of Turing machines is the only one for which any eoneept that approaches 
the power and usefulness of the finite-internal-state concept is presently 
available. 

AeK~OWLEDOM~T 

The author wishes to thank Dr. Juris Hartmanis of the General Electric Re- 
search Laboratory for his critical reading of the manuscript. 

RECEIVED: January 12, 1965 

REFERENCES 

YAMADA, i .  (1962), Real-time computation and recursive functions not real- 
time computable, IRE Trans. Electron Computers EC-11,753-760. 

tt~I~T~ANIS, J., AND ST~A~NS, R. E. (1965), On the computational complexity of 
algorithms. Trans. Am. Math. Soc., in press. 

RAVIN, M. O. (1963), Real-time computation, Israel J. Math., 1,203-211. 


