

MAP COLORING

MAP COLORING

MAP COLORING

COLORING $G \rightarrow$ no adjacent vertices get same color

COLORING $G \rightarrow$ no adjacent vertices get same color

COLORING $G \rightarrow$ no adjacent vertices get same color G is k-colorable if we can use $\leqslant k$ colors

MAP COLORING

etc

COLORING $G \rightarrow$ no adjacent vertices get same color G is k-colorable if we can use $\leqslant k$ colors
$\chi(G): \min \#$ colors we can use to color G
chromatic number

$$
x p \dot{\omega} \mu a=\text { color }
$$

MAP COLORING

COLORING $G \rightarrow$ no adjacent vertices get same color G is k-colorable if we can use $\leqslant k$ colors
$\chi(G): \min \#$ colors we can use to color G
chromatic number
$\left.\begin{array}{l}\text { Our map is } \\ 4 \text {-colorable }\end{array}\right\} x \leqslant 4$

$$
x p \dot{\omega} \mu a=\text { color }
$$

COLORING $G \rightarrow$ no adjacent vertices get same color
G is k-colorable if we can use $\leqslant k$ colors
$\chi(G): \min \#$ colors we can use to color G
chromatic number
$\left.\begin{array}{l}\text { Our map is } \\ 4 \text {-colorable }\end{array}\right\} x \leqslant 4$ $x p \dot{\omega} \mu \alpha=$ color
...but not 3-colorable ${ }^{\text {P }}$

EXAM SCHEDULING
students : $S_{1} S_{2} S_{3} S_{4} \quad s_{5}$ classes $c_{1} c_{2} c_{3} c_{4} c_{5}$

EXAM SCHEDULING

classes $c_{1} \quad c_{2} \quad c_{3} \quad c_{4} \quad c_{5}$

EXAM SCHEDULING
students : $S_{1} s_{2} s_{3} \quad s_{4} \quad s_{5}$ classes $c_{1} c_{2} c_{3} c_{4} c_{5}$

Can't schedule exam simultaneously for classes taken by s_{i} Want to minimize exam slots.

EXAM SCHEDULING
students : $s_{1} \quad s_{2} \quad s_{3} s_{4} s_{5} \quad$ classes $c_{1} c_{2} c_{3} c_{4} c_{5}$

Can't schedule exam simultaneously for classes taken by s_{i} Want to minimize exam slots.
Make G : $V=$ classes $\quad E=$ conflicts

EXAM SCHEDULING

classes $c_{1} c_{2} c_{3} c_{4} c_{5}$

Can't schedule exam simultaneously for classes taken by s_{i} Want to minimize exam slots.
Make G : $V=$ classes $\quad E=$ conflicts
Colors $=$ slots $($ minimize colors)
If no edge has same color at endpoints,

then no 2 classes are in same slot

EXAM SCHEDULING

classes $c_{1} c_{2} c_{3} c_{4} c_{5}$

Can't schedule exam simultaneously for classes taken by s_{i} Want to minimize exam slots.
Make G : $V=$ classes $\quad E=$ conflicts
Colors $=$ slots (minimize colors)
If no edge has same color at endpoints,

then no 2 classes are in same slot

EXAM SCHEDULING

classes $c_{1} c_{2} c_{3} c_{4} c_{5}$

Can't schedule exam simultaneously for classes taken by s_{i} Want to minimize exam slots.
Make G : $V=$ classes $\quad E=$ conflicts
Colors $=$ slots (minimize colors)
If no edge has same color at endpoints,

then no 2 classes are in same slot

What is x for cycles?

What is X for cycles?

$$
\begin{aligned}
x & =2 \text { if } \quad V \text { even } \\
& =3 \text { if } V \text { odd }
\end{aligned}
$$

What is X for cycles?
For trees?

What is X for cycles?

$$
\begin{aligned}
X & =2 \text { if } V \text { even } \\
& =3 \text { if } V \text { odd }
\end{aligned}
$$

For trees?
Remove a leaf, v. 2-color the rest...

What is x for cycles?

$$
\begin{aligned}
x & =2 \text { if } V \text { even } \\
& =3 \text { if } V \text { odd }
\end{aligned}
$$

For trees?
Remove a leaf, v. 2-color the rest.
Color v opposite of $p(v)$

$$
x=2
$$

What is x for cycles? For bipartite graphs?

$$
x=2 \text { if } V \text { even }
$$

$$
=3 \text { if } V \text { odd }
$$

For trees?
Remove a leaf, v. 2-color the rest.
Color v opposite of $p(v)$

$$
x=2
$$

What is x for cycles? For bipartite graphs?

$$
\begin{aligned}
x & =2 \text { if } V \text { even } \\
& =3 \text { if } V \text { odd }
\end{aligned}
$$

For trees?
Remove a leaf, v. 2-color the rest.
Color v opposite of $p(v)$

$$
x=2
$$

What is X for cycles?

$$
\begin{aligned}
x & =2 \text { if } V \text { even } \\
& =3 \text { if } V \text { odd }
\end{aligned}
$$

For bipartite graphs?

$$
x=2
$$

In fact if $X(G)=2$ then G is bipartite by definition

For trees?
Remove a leaf, v.
2-color the rest.
Color v opposite of $p(v)$

$$
x=2
$$

(trees are bipartite)

What is X for cycles?
$x=2$ if V even
$=3$ if V odd
Claim:
G is bipartite \Leftrightarrow

For bipartite graphs?

$$
x=2
$$

In fact if $X(G)=2$ then G is bipartite by definition

For trees?
Remove a leaf, v.
2 -color the rest.
Color v opposite of $p(v)$

$$
x=2
$$

(trees are bipartite)
G contains no odd cycle

What is $X^{(G)}$ if max degree of $G=\Delta$?
Trivial bounds: $x \leqslant n \quad\left[K_{n} ; \Delta=n\right]$ \& $x \geqslant 2$

What is $X(G)$ if \max degree of $G=\Delta$?
Trivial bounds: $x \leqslant n \quad\left[K_{n} ; \Delta=n\right]$ \& $x \geqslant 2$ Claim $x \leqslant \Delta+1$

What is $X^{(G)}$ if max degree of $G=\Delta$?
Trivial bounds: $x \leqslant n \quad\left[K_{n} ; \Delta=n\right]$ \& $x \geqslant 2$

Claim $x \leqslant \Delta+1$
Incrementally "add" vertices.
Look at colors of their neighbors.
Always have $\geqslant 1$ color available.

What is $X^{(G)}$ if max degree of $G=\Delta$?
Trivial bounds: $x \leqslant n \quad\left[K_{n} ; \Delta=n\right]$ \& $x \geqslant 2$

Claim $x \leqslant \Delta+1$

Incrementally "add" vertices.
Look at colors of their neighbors.
Always have $\geqslant 1$ color available.

Remove any vertex v. Color $G-v$ by induction. Re-insert v

Back to $x=2 . \Leftrightarrow$ bipartite graphs
We can test for this efficiently: greedy BFS

Back to $x=2 . \Leftrightarrow$ bipartite graphs
We can test for this efficiently: greedy BFS
\rightarrow Color any vertex blue
Then its neighbors must be red.

Back to $x=2 . \Leftrightarrow$ bipartite graphs
We can test for this efficiently: greedy BFS
\rightarrow Color any vertex blue
Then its neighbors must be red.
All their neighbors must be blue, etc

Back to $x=2 . \Leftrightarrow$ bipartite graphs
We can test for this efficiently: greedy BFS
\rightarrow Color any vertex blue
Then its neighbors must be red.
All their neighbors must be blue, etc
If this search finds an already colored vertex,
either it matches what we would have colored it OR we conclude that $x>2$

Back to $x=2 . \Leftrightarrow$ bipartite graphs
We can test for this efficiently: greedy BFS
\rightarrow Color any vertex blue
Then its neighbors must be red.
All their neighbors must be blue, etc
If this search finds an already colored vertex,
either it matches what we would have colored it OR we conclude that $x>2$

Testing if $x \leqslant 3$ is NP-complete! (or if $x \leqslant$ any constant)

COLORING PLANAR GRAPHS (like map duals) Claim: $x \leqslant 6$... trivial if $v \leqslant 6$

COLORING PLANAR GRAPHS (like map duals)
Claim: $x \leqslant 6$... trivial if $v \leqslant 6$
We know planar graphs have a vertex $\omega /$ degree ≤ 5

COLORING PLANAR GRAPHS (like map duals)
Claim: $x \leqslant 6$... trivial if $v \leqslant 6$
We know planar graphs have a vertex $w /$ degree ≤ 5
Given planar G s.t. $V>6$ \& $u \in G, d(u) \leq 5$

COLORING PLANAR GRAPHS (like map duals)
Claim: $x \leqslant 6$... trivial if $v \leqslant 6$
We know planar graphs have a vertex $\omega /$ degree ≤ 5 Given planar G s.t. $V>6$ \& $u \in G, d(u) \leq 5$: look at $G-u$
-

COLORING PLANAR GRAPHS (like map duals)
Claim: $x \leqslant 6$... trivial if $v \leqslant 6$
We know planar graphs have a vertex $\omega /$ degree ≤ 5
Given planar G s.t. $V>6$ \& $u \in G, d(u) \leq 5$: look at $G-u$ Assume by induction that $G-u$ is 6 -colorable

COLORING PLANAR GRAPHS (like map duals)
Claim: $x \leqslant 6$... trivial if $v \leqslant 6$
We know planar graphs have a vertex $w /$ degree ≤ 5 Given planar G s.t. $V>6$ \& $u \in G, d(u) \leq 5$: look at $G-u$ Assume by induction that $G-u$ is 6 -colorable

re-insert u: give it a color not used by neighbors

Claim: $x \leq 5$... trivial if ???

Claim: $x \leq 5$... trivial if $v \leqslant 5$

Also trivial if neighbors use <5 colors

Claim: $x \leqslant 5$... trivial if $v \leqslant 5$
Use induction \& $d(u) \leqslant 5$ again

Also trivial if neighbors use <5 colors

Claim: $x \leqslant 5$... trivial if $v \leqslant 5$
Use induction \& $d(u) \leqslant 5$ again

Also trivial if neighbors use < 5 colors

Consider any embedding of G We need a neighbor of u to change color

Try to change x from to
[specifically skipping 2 over in $\operatorname{adj}(u)$]
\rightarrow This works if x has no neighbors

[specifically skipping 2 over in $\operatorname{adj}(u)$]
\rightarrow This works if x has no - neighbors
\rightarrow else, swap colors on the connected component of the subgraph of G that contains only colors and x.

Try to change x from to .
[specifically skipping 2 over in $\operatorname{adj}(u)$]
\rightarrow This works if x has no - neighbors
\rightarrow else, swap colors on the connected component of the subgraph of G that contains only colors and x.

Δ

Try to change x from to
[specifically skipping 2 over in $\operatorname{adj}(u)$]
\rightarrow This works if x has no - neighbors
Lelse, swap colors on the connected component of the subgraph of G
that contains only colors and \times. 1 ONE PROBLEM

Try to change x from to
[specifically skipping 2 over in $\operatorname{adj}(u)$]
\rightarrow This works if x has no neighbors
Lelse, swap colors on the connected component of the subgraph of G that contains only colors and x.
\qquad ONE PROBLEM

The only bad case involves a path from x to y that alternates $x \in=0 \ldots y$

The only bad case involves a path from x to y that alternates $x \in=0, \ldots y$

Together with (u) the path forms a cycle surrounding the neighbor of u.

The only bad case involves a path from x to y that alternates $x \in=\bullet \ldots y$

Together with u the path forms a cycle surrounding the neighbor of u.

Restart the entire procedure using s \& t instead of x \& y.

The only bad case involves a path from x to y that alternates $x \in=0, \ldots y$

Together with u the path forms a cycle surrounding the neighbor of u.

Restart the entire procedure using s \& t instead of x \& y.
The only way to fail is if there is a path soul

The only bad case involves a path from x to y that alternates $x \in=0, \ldots y$

Together with u the path forms a cycle surrounding the neighbor of u.

Restart the entire procedure using s \& t instead of x \& y.
The only way to fail is if there is a path soult but this would have to cross $x 0=0 . . . y$

The only bad case involves a path from x to y that alternates $x \in=0, \ldots y$

Together with u the path forms a cycle surrounding the neighbor of u.

Restart the entire procedure using s \& t instead of x \& y.
The only way to fail is if there is a path soult but this would have to cross $x 0=0 . . . y$

Impossible: This is a plane drawing

Planar graphs:
6-coloring: ~ trivial
5-coloring: short elegant proof

Planar graphs:
6-coloring: ~ trivial
5-coloring: short elegant proof
4-coloring: . unsolved from $\leqslant 1850$ until 1977

- proof involved 2000 cases solved by computer

Planar graphs:
6-coloring: ~ trivial
5-coloring: short elegant proof
4-coloring: unsolved from $\leqslant 1850$ until 1977

- proof involved 2000 cases solved by computer

3-coloring: clearly not always possible

- if triangle-free then 3-colorable (in fact if $\leqslant 3$ triangles)

