Spanners

Other desirable properties

- use few edges
- minimize degree
- planarity
- minimize max. path length
- robustness: good connectivity etc

Objective $>$
Given a set of vertices, form a graph (place edges) s.t. the spanning ratio (detour) for any pair of vertices is "low".

$$
\text { ratio }=\frac{\text { distance via graph }}{\text { Euclidean dist. }}
$$

the θ-graph spanner

Form k cones w/ angle $\theta=\frac{2 \pi}{k}$
the θ-graph spanner

Form k cones w/ angle $\theta=\frac{2 \pi}{k}$
For every vertex v
shift cone structure onto v
\& connect v to 1 vertex in each cone (if non-empty)

Connection rule:

- project vertices onto cone bisector
- choose vertex with closest projection
the θ-graph spanner

Form K cones $\omega /$ angle $\theta=\frac{2 \pi}{k}$
For every vertex v
shift cone structure onto v
\& connect v to 1 vertex in each cone (if nonempty)

Connection rule:

- project vertices onto cone bisector
- choose vertex with closest projection
the θ-graph spanner

Form k cones $\omega /$ angle $\theta=\frac{2 \pi}{k}$
For every vertex v
shift cone structure onto v
\& connect v to 1 vertex in each cone (if nonempty)

Connection rule:

- project vertices onto cone bisector
- choose vertex with closest projection
the θ-graph spanner

Form K cones $\omega /$ angle $\theta=\frac{2 \pi}{k}$
For every vertex v
shift cone structure onto v
\& connect v to 1 vertex in each cone (if nonempty)

Connection rule:

- project vertices onto cone bisector
- choose vertex with closest projection
the θ-graph spanner

Form k cones $\omega /$ angle $\theta=\frac{2 \pi}{k}$
For every vertex v
shift cone structure onto v
\& connect v to 1 vertex in each cone (if non-empty)

Connection rule:

- project vertices onto cone bisector
- choose vertex with closest projection
the θ-graph spanner

Form k cones $\omega /$ angle $\theta=\frac{2 \pi}{k}$
For every vertex v
shift cone structure onto v
\& connect v to 1 vertex in each cone (if nonempty)

Connection rule:

- project vertices onto cone bisector
- choose vertex with closest projection

Form K cones $\omega /$ angle $\theta=\frac{2 \pi}{k}$
For every vertex v
shift cone structure onto v
\& connect v to 1 vertex in each cone (if non-empty)

Connection rule:

- project vertices onto cone bisector
- choose vertex with closest projection
the θ-graph spanner

Not so useful with KN |E|
But for $k=O(1)$ we keep $\leqslant k \cdot V=O(v)$ edges

Form k cones $\omega /$ angle $\theta=\frac{2 \pi}{k}$
For every vertex v
shift cone structure onto v
\& connect v to 1 vertex in each cone (if nonempty)

Connection rule:

- project vertices onto cone bisector
- choose vertex with closest projection
θ-graph: good spanner? Depends on θ.
connected for $\frac{\theta=180^{\circ}}{\text { trivial }} 120^{\circ}$?, 90° ? Here we focus on $k \geqslant 9$ i.e $\theta \leqslant \frac{2 \pi}{9}$ even though the illustration has $k=6$

θ-graph: good spanner? Depends on θ.
Here we focus on $k \geqslant 9$ ie $\theta \leqslant \frac{2 \pi}{9}$ even though the illustration has $k=6$

Now to define a sufficient path from any a to any b.

θ-graph: good spanner? Depends on θ.
Here we focus on $k \geqslant 9$ i.e $\theta \leqslant \frac{2 \pi}{9}$ even though the illustration has $k=6$

Starting at a identify cone containing b.
Move to a neighbor of a in that cone.
b
θ-graph: good spanner? Depends on θ.
Here we locus on $k \geqslant 9$ i.e $\theta \leqslant \frac{2 \pi}{9}$ even though the illustration has $k=6$

Repeat:
From current vertex move to a neighbor in cone containing b. Any neighbor but why not the outgoing
one

θ-graph: good spanner? Depends on θ.
Here we locus on $k \geqslant 9$ i.e $\theta \leqslant \frac{2 \pi}{9}$ even though the illustration has $k=6$

Eventually (ideally) reach b.
can we cycle?
let's see why not

Given a cone at p : suppose r projects nofurther than q

Claim: $p q \geqslant p r \cdot \cos \theta$
[note that pr can be greater than pq]

Given a cone at p : suppose r projects no further than q

Claim: $p q \geqslant p r \cdot \cos \theta$

$$
\text { (i.e., } p q^{\prime} \geqslant p r^{\prime} \text {) }
$$

$p q \geqslant p q^{\prime} / /$ trivially
$\geqslant p r^{\prime} / /$ by assumption

$$
\begin{aligned}
p r^{\prime} & =p r \cdot \cos b \\
& \geqslant p r \cdot \cos \theta
\end{aligned}
$$

Given a cone $\omega \quad \theta \leqslant \frac{2 \pi}{8}$ at p : suppose r projects no further than 9 (ie., $p q^{\prime} \geqslant p r^{\prime}$)
Proved : $p q \geqslant p r \cdot \cos \theta$
New claim: $r q \leqslant p q+(\sin \theta-\cos \theta) \cdot p r$
we are aiming for 9 but we go to r
\& we want to bound the residual distance
If the residual gets smaller, we wont cycle.

Given a cone $w \quad \theta \leqslant \frac{2 \pi}{8}$ at p : suppose r projects nofurther than q

Proved : $p q \geqslant p r \cdot \cos \theta$
New claim: $r q \leqslant p q+(\sin \theta-\cos \theta) \cdot p r$
Suppose r projects onto $p q$ (at s)

$$
r s=p r \cdot \sin \gamma \quad p s=p r \cdot \cos \gamma
$$

Given a cone $\theta \leqslant \frac{2 \pi}{8}$ at p : suppose r projects nofurther than q

$$
\text { (i.e., } p q^{\prime} \geqslant p r^{\prime} \text {) }
$$

Proved : $p q \geqslant p r \cdot \cos \theta$
New claim: $r q \leqslant p q+(\sin \theta-\cos \theta) \cdot p r$
Suppose r projects onto $p q$ (at s)

$$
\begin{aligned}
& \text { Suppose } r \text { projects onto } p q \text { a } \quad p s=p r \cdot \cos \gamma \\
& r s=p r \cdot \sin \gamma \quad r q \leqslant r s+s q / / t \text { triangle }
\end{aligned}
$$

Given a cone $w \quad \theta \leqslant \frac{2 \pi}{8}$ at p : suppose r projects no further than 9
Proved : $p q \geqslant p r \cdot \cos \theta$

$$
\text { (i.e., } p q^{\prime} \geqslant p r^{\prime} \text {) }
$$

New claim: $r q \leqslant p q+(\sin \theta-\cos \theta) \cdot p r$
Suppose r projects onto $p q$ (at s)

$$
\begin{aligned}
r s & =p r \cdot \sin \gamma \quad p s=p r \cdot \cos \gamma \\
r q & \leqslant r s+s q \\
& =r s+p q-p s \\
& =p r \cdot(\sin \gamma-\cos \gamma)+p q \\
& \leqslant p r \cdot(\sin \theta-\cos \theta)+p q / / \sin x-\cos x
\end{aligned}
$$

Given a cone/ $\theta \leqslant \frac{2 \pi}{8}$ at p : suppose r projects nofurther than q
Proved : $p q \geqslant p r \cdot \cos \theta$
New claim: $r q \leqslant p q+(\sin \theta-\cos \theta) \cdot p r$
Suppose r projects OFF iq (at s)

$$
\begin{aligned}
r s & =p r \cdot \sin \gamma \quad p s=p r \cdot \cos \gamma \\
r q & \leq r s+s q \\
= & r s+p s-p q \\
& =p r \cdot(\sin \gamma+\cos \gamma)-p q \\
& \\
& \text { like be fore but } \\
& \text { signs changed }
\end{aligned}
$$

Given a cone/ $\theta \leqslant \frac{2 \pi}{8}$ at p : suppose r projects nofurther than q
Proved : $p q \geqslant p r \cdot \cos \theta$
New claim: $r q \leqslant p q+(\sin \theta-\cos \theta) \cdot p r$
Suppose r projects OFF pq (at s)

$$
\begin{aligned}
r s & =p r \cdot \sin \gamma \quad p s=p r \cdot \cos \gamma \\
r q & \leqslant r s+s q \\
& =r s+p s-p q \\
& =p r \cdot(\sin \gamma+\cos \gamma)-p q \\
& \leqslant p r \cdot(\sin \theta+\cos \theta)-p q / / \sin x+\cos x
\end{aligned}
$$

Given a cone $\omega / \theta \leqslant \frac{2 \pi}{8}$ at p : suppose r projects no further than 9
Proved: $p q \geqslant p r \cdot \cos \theta$
New claim: $r q \leqslant p q+(\sin \theta-\cos \theta) \cdot p r$
Suppose r projects OFF iq (at s)

$$
\begin{aligned}
r s & =p r \cdot \sin \gamma \quad p s=p r \cdot \cos \gamma \\
r q & \leqslant r s+s q \\
& =r s+p s-p q \\
& =p r \cdot(\sin \gamma+\cos \gamma)-p q \\
& \leqslant p r \cdot(\sin \theta+\cos \theta)-p q \\
& \leqslant p q+p r \sin \theta-p q \quad * \\
& \leqslant p q+p r \sin \theta-(p r \cos \theta) *
\end{aligned}
$$

Given a cone $\theta \leqslant \frac{2 \pi}{8}$ at p : suppose r projects nofurther than q
Proved: $r q \leqslant p q+(\sin \theta-\cos \theta) \cdot p r$
Now, put it into context.
We are constructing a path from some vertex to q.
Let p be on that path. To continue, p looks for q in some cone, w/ $\theta \leqslant \frac{2 \pi}{q}<\frac{2 n}{8}$ If p links to q, great. Otherwise it must link to some r. Our algorithm will move to r.

Given a cone $\theta \leqslant \frac{2 \pi}{8}$ at p_{i} suppose pill projects no further than 9 Proved : $\quad p_{i+1} q \leq p_{i q}+(\sin \theta-\cos \theta) \cdot p_{i} p_{i+1}$

Now, put it into context.
We are constructing a path from some vertex to q.
Let p be on that path. To continue, p looks for q in some cone, $w / \theta \leqslant \frac{2 \pi}{q}<\frac{2 n}{8}$ If p links to q, great. Otherwise it must link to some r. Our algorithm will move to r. Label $p \rightarrow p_{i}$ \& $r \rightarrow p_{i+1}$

Given a cone w/ $\quad \theta \frac{2 \pi}{8}$ at p_{i} suppose pi+1 projects no further than 9

Derive upper bound on total path?

Given a cone w/ $\theta \leqslant \frac{2 \pi}{8}$ at p_{i} suppose pill projects no further than 9

$$
\text { Proved: }[p_{i+1} q \leqslant p_{i} q+\underbrace{(\sin \theta-\cos \theta}_{\text {negative for } \theta<45^{\circ}}) \cdot p_{i} p_{i+1}<p_{i} q]
$$

$$
p_{i+1} q<p_{i} q \rightarrow \text { no }_{0} \text { cycles }
$$ We have a spanner!

$$
\begin{aligned}
\underset{\underset{\sim}{\text { Total }} p a t h}{ } \underset{p_{0}}{\text { T }} \sum_{i=0}^{m-1} p_{i} p_{i+1} \leqslant \frac{1}{\cos \theta-\sin \theta} \sum_{i=0}^{m-1}\left(p_{i} q-p_{i+1} q\right) & =\frac{1}{\cos \theta-\sin \theta} \cdot\left(p_{0} q-p_{y} q\right) \\
& =\frac{1}{\cos \theta-\sin \theta} \cdot a q
\end{aligned}
$$

SUMMARY
For $\theta<45^{\circ}$, i.e. w/ $k \geqslant 9$ cones, a θ-graph is a t-spanner, where $t \leqslant \frac{1}{\cos \theta-\sin \theta}$
$\left.A\right|_{\text {so, }}$ it uses $\leq k \cdot V$ edges

	k	θ	t
	9	40°	8.1
Construction of θ-graph : see links	12	30°	2.7
Getting bounded degree	24	15°	1.4
	120	3°	1.06

