$$
\left.\begin{array}{l}
\text { SUFFIX TREES } \\
\text { TEXT (} T \text {) : SHESELLSSEASHELLSBYTHESEASHORE } \\
\text { PATTERN (P): ASH } \\
\text { GOAL: see if } P \text { is in } T \\
C \text { count/find all matches }
\end{array}\right\} \begin{aligned}
& \text { 1) as fast as possible, } \\
& \text { after pre-processing } T \\
& \text { a bt also minimize } \\
& \text { pre-processing time/space }
\end{aligned}
$$

(1) $\Omega(P) \rightarrow$ multiple searches: $\Omega\left(\Sigma\left(P_{i}\right)\right)$
(2) $\Omega(T)$

Text : $\quad \times A B \times A G$
alphabet: A, B, B, X

The suffixes are still there. but we can't enumerate matches.

Also we cant answer other queries eeg. "find words starting with AB..."

UKKONEN's ALGORITHM to build a suffix tree in $O(T)$ time

- iteratively build suffix tree: iteration i builds tree on $T[1 \ldots i]$ \rightarrow note: we actually build the "implicit" tree (\& make it proper at last iteration)

$\times A B X A \quad$ At iteration i, we make i "extensions"

Each extension handles one of the existing suffixes (including empty suffix)

$X A B X \rightarrow X A B X A$
$A B X \longrightarrow A B X A$
$B X \rightarrow B X A$
$X \rightarrow \quad X A$
$\phi \rightarrow \quad A$

3 cases depending on how current suffix "ends"

1) at a leaf

2) not at a leaf, but new character is already there \leftrightarrow do nothing
3) not at a leaf, new char. not there G make new edge 0/ new character

Another example: $A \times A B \times B$

$$
\begin{array}{lrr}
\text { suffix } & 1 & A \times A B \times B \\
& 2 & \times A B \times B \\
3 & A B \times B \\
& 4 & B \times B \\
& 5 & \times B \\
& 6 & B
\end{array}
$$

Let $T[6]=B$
(iteration 6)

1) at a leaf \rightarrow extend current label
2) not at a leaf, but new character is already there \rightarrow do nothing
3) not at a leaf, new char. not there \rightarrow make new edge $w /$ new character

At iteration i, we make i "extensions"
For each extension: $\underbrace{3 \text { cases }}_{\text {each looks easy } \& \text { quick }}$ depending on $\underbrace{\text { how current suffix "ends" }}_{\text {how do we determine this? }}$

* Scanning whole suffix $\rightarrow O\left(i^{2}\right)$ per iteration
* Using indexing doesn't help (yet)

1) at a leaf \rightarrow extend current label
2) not at a leaf, but new character is already there \rightarrow do nothing
3) not at a leaf, new char. not there \rightarrow make new edge $\Delta /$ new character

How do we determine where a current suffix "ends" ? (quickly) Suffix Links
Say we just found the end of a suffix, $X A B C D E$ (maybe while extending it ω / F or something else)

Then $A B C D E$ is also a suffix, so it is also in the tree and it is the next extension

$$
T[1 \ldots i-1]=X A B C D E F G X A B C D E \text { ? }
$$ so it would help to have a link from every $x \alpha$ to α...except maybe there was no node at $x \alpha$

no node here

Instead move up until a node is found, use a suffix link from node to node, then "move down"
deal w this $\quad($ hex
later $\quad(1)$ issue:

When do we create a new node?
$L_{\rightarrow \text { case }}$ where we process $\times \propto$ to extend ω and $\exists \times \propto z \quad(z \neq \omega)$
(end of $x \alpha$ is in mid-edge)

When do we create a suffix link from $x \alpha$ to α ?
\rightarrow First we need to know that a node exists at α.

When do we create a new node?
\rightarrow case where we process $\times \propto$ to extend ω and $\exists \times \alpha z \quad(z \neq \omega)$
(end of $x \alpha$ is in mid-edge)

When do we create a suffix link from $x \alpha$ to α ?
\rightarrow First we need to know that a node exists at α.
\rightarrow either it does already, or
it will be created at next extension (we will process α)
So we can assume that all "old" nodes have outgoing suffix links

Example of suffix link target node existing before source node

to be created at extension 9

$$
\begin{aligned}
& 123456789 \\
& \alpha z \alpha y \times \alpha \text { Y X } \alpha \omega
\end{aligned}
$$

currently processing extension 8

When following a suffix link, node depth (from root) can

- stay same
- increase (down to ~ leaf)
- decrease
(ie. move up)
example
 to follow
example of v with suffix link to $s(v)$ where $\operatorname{depth}(v) \ll \operatorname{depth}(s(v))$

1
abode $\times a b c d e f \times a b c d e q a \alpha a b b a b c \gamma a b c d \delta$ ${ }^{6} \times a b c d e f \times a b c d e q a \alpha a b b a b c \gamma a b c d \delta$ abcdef $\times a b c d e q a<a b b a b c \gamma a b c d \delta$ ${ }^{13} \times a b c d e q a \alpha a b b a b c \gamma a b c d \delta$ ${ }^{14} a b c d e q a \alpha a b b a b c \gamma a b c d \delta$

When following a suffix link, node depth (from root) can

- stay same
- increase (down to ~ leaf)
- decrease (only by 1)
(ie. move up)

we've seen: if $x y$ leads to v
then y is in tree, leading to $s(v)$
So every node on path from x to v has a "mirror" node on path from root to $s(v)$
(reverse not necessarily true)

When following a suffix link, node depth (from root) can

- stay same
- increase (down to ~ leaf)
- decrease (only by 1) (ie. move up)

amortize : total node hops per iteration $=O(i)$

$$
[\text { total upward }=O(i) \text { \& max depth }=O(i)]
$$

CONCLUSION
During iteration i, we visit $O(i)$ nodes \qquad ie same node ... spending $O(1)$ time to find each, excluding the first one: total work $O(i)$

Story so far: find "end" of next extension using suffix link from end of current extension (plus a bit of up/down)
What if current extension makes no new node?

extend $x \alpha+\omega$
but $x \alpha \omega$ already in tree
\& $\quad(\alpha \omega$ also in tree)
extension

Table of cases applied in each extension of each iteration 4 nothing right of 2

All future extensions in current iteration will also follow same case

1) at a leaf \rightarrow extend current label
${ }_{2}$) not at a leaf, but new character is already there \rightarrow do nothing
2) not at a leaf, new char. not there \rightarrow make new edge $\omega /$ new character

Story so far: find "end" of next extension using suffix link from end of current extension (plus a bit of up/down)
What if current extension makes no new node?

First extension of every iteration:
(longest suffix ends at leaf) extension

1) at a leaf \rightarrow extend current label
2) not at a leaf, but new character is already there \rightarrow do nothing
3) not at a leaf, new char. not there \rightarrow make new edge $\omega /$ new character

Story so far: find "end" of next extension using suffix link from end of current extension (plus a bit of up/doun)
What if current extension makes no new node?

All suffixes considered in the future will divert elsewhere in the tree, or stop short on this path. or extend this path
\qquad
"once a leaf, always a leaf"
What if arbitrary
extension j of
iteration i uses

1) at a leaf \rightarrow extend current label case 1?
2) not at a leaf, but new character is already there \rightarrow do nothing
3) not at a leaf, new char. not there \rightarrow make new edge $0 /$ new character

Any future extension j

1) at a leaf \rightarrow extend current label
\& use same rule
2) not at a leaf, but new character is already there \rightarrow do nothing
3) not at a leaf, new char. not there \rightarrow make new edge $w /$ new character
what if extension j uses case $3 ? \rightarrow$ creates a leaf ... same logic, must have i's below
We've determined that below any 1 we can have only 1 's
\uparrow

4) at a leaf \rightarrow extend current label
5) not at a leaf, but new character is already there \rightarrow do nothing
6) not at a leaf, new char. not there \rightarrow make new edge $M /$ new character

if 1 or $3 \rightarrow$ all 1 's below
if $2 \rightarrow$ empty to right
$\leq 2|T|$ "interesting" entries
(still $O\left(T^{2}\right)$ work!)

How to handle the 1's: use a global variable = iteration \#

- recall, the 1 's involve leaf (edge) extensions
- edges are represented by indices in T.
- the "end" index just gets incremented: $i-1 \rightarrow i$

Last step: add $\$$: makes all implicit suffixes proper
conclusion: suffix tree construction $\rightarrow O(T)$ time \& space

