NETWORK FLOW - FLOW NETWORKS
network $=$ directed graph
S : supply: unbounded input
T : target: output limited only by network

Each edge has a capacity \geqslant flow

- Vertices: \sum input $=\sum$ output \rightarrow keep things flowing
$c(x, y)=$ capacity of edge $\overrightarrow{x y} \quad \rightarrow$ part of problem input
$f(x, y)=$ actual flow in edge $\overrightarrow{x y} \rightarrow$ TBD

Capacity constraint: $0 \leq f(x, y) \leq c(x, y)$

Flow conservation: For all $u \neq s, T: \quad \sum_{\text {all }} f(v, u)=\sum_{\text {all }} f(u, v)$
changed direction

v: should be removed
Every vertex should be on $\geqslant 1$ directed path $S \rightarrow T$.

Both directions allowed,
Note: w/ 2 directions, but we can simulate. one will always have zero flow.

Can we simplify this?

If any cycle has flow on all edges, we can get an equivalent solution with $\geqslant 1$ edge having zero flow.

Notice any edge $\overrightarrow{v S}$ must be part of a cycle.
Any solution has an equivalent with $f(v, S)=0$

If any cycle has flow on all edges, we can get an equivalent solution with $\geqslant 1$ edge having zero flow.

Notice any edge $\overrightarrow{v S}$ must be part of a cycle.
Any solution has an equivalent with $f(v, S)=0$

If any cycle has flow on all edges, we can get an equivalent solution with $\geqslant 1$ edge having zero flow.

Notice any edge $\overrightarrow{v S}$ must be part of a cycle. Any solution has an equivalent with $f(v, S)=0$

If any cycle has flow on all edges, we can get an equivalent solution with $\geqslant 1$ edge having zero flow.

Notice any edge $\overrightarrow{v S}$ must be part of a cycle. Any solution has an equivalent with $f(v, s)=0$
 (intuitive... why send product back to limitless source?
In any case assume $\mathrm{S} \underset{\underset{\sim}{\underset{\sim}{~}} \boldsymbol{\rightarrow}}{\rightarrow}$ (can also resolve multisource/target networks)

Goal: maximize FLow vALUE $=\sum_{a l l v} f(S, v)=\sum_{\text {allv}} f(v, T)$

\#: capacities
\#: flows

Goal: maximize FLow vALUE $=\sum_{a l l v} f(S, v)=\sum_{\text {allv}} f(v, T)$

\#: capacities
\#: flows

Goal: maximize FLow vALUE $=\sum_{a l l v} f(S, v)=\sum_{\text {allv}} f(v, T)$

\#: capacities
\#: flows

Goal: maximize flow vALUE $=\sum_{\text {all } v} f(S, v)=\sum_{a l l v} f(v, T)$

\#: capacities
\#: flows

Goal: maximize flow value $=\sum_{\text {all } v} f(S, v)=\sum_{\text {all }} f(v, T)$

\#: capacities
\#: flows

Goal: maximize FLow vALUE $=\sum_{a l l v} f(S, v)=\sum_{\text {allv}} f(v, T)$

\#: capacities
\#: flows

Goal: maximize FLow vALUE $=\sum_{\text {all } v} f(S, v)=\sum_{\text {allv}} f(v, T)$

\# : capacities
\#: flows

Goal: maximize FLow vALUE $=\sum_{\text {all } v} f(S, v)=\sum_{\text {all }} f(v, T)$

\#: capacities
\#: flows

Goal: maximize flow value $=\sum_{\text {all }} f(S, v)=\sum_{\text {all }} f(v, T)$

\#: capacities
\#: flows

Ideas : - simplify cycles

- find positive paths from S to T

CUTS

- partition vertices into 2 groups.
- $S \& T$ separated.

- edges: either not cut, or cut once $\rightarrow\left\{\begin{array}{l}\text { from } S \text { to } T \\ \text { from } T \text { to } S\end{array}\right.$

$$
\begin{gathered}
\text { Flow }(C)=\sum \text { flow }-\sum \text { flow } \\
=11+1+11+15-12-7
\end{gathered}
$$

$$
\begin{aligned}
& \text { Flow }(C)=\sum \text { flow }-\sum \text { flow } \\
& =11+1+11+15-12-7=19
\end{aligned}
$$

$$
F_{\text {low }}(C)=F_{\text {low }}^{11+8} \mid\left(C_{2}\right)
$$

$$
\begin{gathered}
\text { Flow }(C)=\sum \text { flow }-\sum \text { flow } \\
=11+1+11+15-12-7=19
\end{gathered}
$$

$$
F \text { low }_{\text {ow }}(C)=F \text { low }_{\text {ow }}\left(C_{2}\right)=F_{1+12-4}
$$

$$
\begin{aligned}
& \text { Flow }(C)=\sum \text { flow }-\sum \text { flow } \\
& =11+1+11+15-12-7=19
\end{aligned}
$$

$$
\left.F_{\text {low }}(C)=F_{\text {low }}\left(C_{2}\right)=F_{\text {low }}\left(C_{3}\right)=F_{\text {low }} \text { (any cut }\right)=F_{\text {Low VALUE }}
$$

$$
\begin{aligned}
& \text { Flow }(C)=\sum \text { flow }-\sum \text { flow } \\
& =11+1+11+15-12-7=19
\end{aligned}
$$

$$
F_{\text {low }}(C)=F_{\text {low }}\left(C_{2}\right)=F_{\text {low }}\left(C_{3}\right)=F_{\text {low }}(\text { any cut })=F \text { Low VALUE }
$$

$$
\begin{aligned}
& \text { Flow }(C)=\sum \text { flow }-\sum \text { flow } \\
& =11+1+11+15-12-7=19 \\
& \text { Capacity }(C)=\sum \text { capacity } \\
& =16+4+14+20=54 \\
& \quad F \operatorname{low}(C)=F \operatorname{low}\left(C_{2}\right)=F \operatorname{low}\left(C_{3}\right)=F l_{\text {ow }}(\text { any cut })=\text { FLOW VALUE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Flow }(C)=\sum \text { flow }-\sum \text { flow } \\
& \quad=11+1+11+15-12-7=19 \\
& \text { Capacity }(C)=\sum \text { capacity } \\
& =16+4+14+20=54
\end{aligned}
$$

(i) $F_{\text {low }}(C)=\operatorname{Flow}_{\text {low }}\left(C_{2}\right)=\operatorname{Flow}_{\text {low }}\left(C_{3}\right)=F_{\text {low }}$ (any cut) $=$ Flow value
(ii) Flow $(C) \leqslant$ Capacity (C)
\rightarrow Flow value \leqslant Capacity $(C) \ldots$

$$
\begin{aligned}
& \text { Flow }(C)=\sum \text { flow }-\sum \text { flow } \\
& \quad=11+1+11+15-12-7=19 \\
& \text { Capacity }(C)=\sum \text { capacity } \\
& =16+4+14+20=54
\end{aligned}
$$

(i) $F_{\text {low }}(C)=\operatorname{Flow}_{\text {low }}\left(C_{2}\right)=\operatorname{Flow}_{\text {low }}\left(C_{3}\right)=F_{\text {low }}$ (any cut) $=$ Flow value
(ii) low $_{\text {(}}(C) \leqslant$ Capacity (C)
\rightarrow FLOW VALUE $\leqslant \min _{\text {all cuts }}\{$ Capacity $\} \rightarrow$ MAX FLOW \leqslant MIN CUT

Residual network \rightarrow all potential flow changes
Blue edges $=$ reverse flow $=$ potential flow decrease
Black edges (pink labels) = potential flow increase

Every edge in network is "represented" here, at least once.
Any directed $S \rightarrow T$ path in the residual network means we can
$S \rightarrow V_{2} \rightarrow V_{3} \rightarrow T:$ AUGMENTING PATH improve the solution.

Residual network \&

if \exists augmenting path then flow can increase if $\frac{\text { MAX flow }}{A}$ then no augmenting path.
if flow equals capacity of some cut, then we have $\underbrace{\text { MAX flow }}_{C}$ (MAX FLOW $\leqslant \operatorname{MIN}$ CUT)

$$
\text { To prove: }\left\{\begin{array}{l}
\text { if no augmenting path } \\
\text { then flow equals capacity of some cut } \\
C
\end{array}\right.
$$

no augmenting path $\xrightarrow{?}$ flow equals capacity of some cut In residual network, let X : \{vertices reachable from $S\}, Y=V-X$
no augmenting path $\rightarrow T$ is in Y
$\rightarrow X \& Y$ define a cut, C

no augmenting path $\xrightarrow{?}$ flow equals capacity of some cut

Look at any edge $\overline{p q}$ crossing C in flow network.

- $\overrightarrow{p q}$ is not in residual. (otherwise 9 would be in X)

no augmenting path $\xrightarrow{?}$ flow equals capacity of some cut

Look at any edge $\overline{p q}$ crossing C in flow network.

- $\overrightarrow{p q}$ is not in residual.
(otherwise 9 would be in X)
if $\overrightarrow{P q}$ in flow network then $\operatorname{Flow}(\overrightarrow{p q})=\operatorname{Capacity}(\overrightarrow{p q})$
no augmenting path $\xrightarrow{?}$ flow equals capacity of some cut

easy proof by contradiction

(S)

Look at any edge $\overline{p q}$ crossing C in flow network.

- $\overrightarrow{p q}$ is not in residual.
(otherwise 9 would be in X)
\rightarrow if $\overrightarrow{P q}$ in flow network then $\operatorname{Flow}(\overrightarrow{p q})=\operatorname{Capacity}(\overrightarrow{p q})$
\rightarrow if $\stackrel{\leftarrow}{p q}$ in flow network then Flow $(\stackrel{\uparrow q}{ })=0$
no augmenting path $\xrightarrow{\checkmark}$ flow equals capacity of some cut

$$
\left.\begin{array}{rl}
F l_{\text {ow }}(C) & =\sum \text { flow }-\sum f l_{\text {ow }} \\
\text { Capacity }(C) & =\sum \text { capacity }
\end{array}\right\} \begin{aligned}
& F_{\text {low }}(C)=\sum \text { capacity }-0 \\
& F_{\text {low }}(C)=\text { Capacity }(C)
\end{aligned}
$$

For edges crossing $C(x, y)$ if $\overrightarrow{P q}$ in flow network then $\operatorname{Flow}(\overrightarrow{p q})=\operatorname{Capacity}(\overrightarrow{p q})$
if $\stackrel{\leftarrow}{p q}$ in flow network then Flow $(p q)=0$

FORD-FULKERSON method

- start w/ zero flow how many times?
- while augmenting path exists

$$
\begin{aligned}
& \text { gmenting path exists } \\
& \text { increase flow on an augmenting path } \\
& \left.\left.\qquad \begin{array}{l}
\text { - find min-weight } w \text { on aug. path } \\
\text { - for every edge pg on aug. path } \\
-i f ~ \\
\overrightarrow{p q} \text { in flow network } \\
\text { add } w \text { to Flow }(\overrightarrow{p q}) \\
\text { else subtract w from } F l o w(\overrightarrow{p q})
\end{array}\right\} O \text { (path length }\right)
\end{aligned}
$$

forms basis of more advanced algorithms (e.g. Edmonds-Karp)
\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge)

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge)

Residual graph
\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge) \#: reverse (residual edge)

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge) \#: reverse (residual edge) \sim : augmenting path

$$
S_{16}^{\rightarrow} V_{12} \rightarrow V_{12} \rightarrow V_{2} \rightarrow V_{14} \underset{4}{\rightarrow} t
$$

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge) M: augmenting path

$$
\mathrm{S} \rightarrow \mathrm{16}_{16} V_{12} V_{3} \underset{9}{\rightarrow} V_{2} \rightarrow V_{4} \underset{\text { 4 }}{\rightarrow} t
$$

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge)

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\# : reverse (residual edge)

Residual graph
\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\# : reverse (residual edge)

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge) \#: reverse (residual edge) \sim : augmenting path

$$
S \rightarrow{ }_{13} V_{2} \rightarrow V_{4} \rightarrow V_{3} \rightarrow t
$$

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge) \# : reverse (residual edge) N: augmenting path

$$
\mathrm{S} \rightarrow 13 \mathrm{~V} \mathrm{~V}_{2} \rightarrow V_{1} \rightarrow V_{8} \rightarrow t
$$

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge)

Residual graph
\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge)

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge) \#: reverse (residual edge) \sim : augmenting path

$$
s \rightarrow \underset{12}{\rightarrow} V_{1} \rightarrow V_{2} \underset{(4)}{\rightarrow} V_{3} \rightarrow t
$$

\#: capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge) \sim : augmenting path

$$
s \rightarrow V_{12} V_{4} V_{2} \underset{(4)}{\rightarrow} V_{3} \rightarrow t
$$

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge)

Residual graph
\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge)

\#: capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge) N: augmenting path

$$
s \underset{9}{\rightarrow} V_{10} \rightarrow V_{4} \rightarrow \underset{12}{\rightarrow} V_{3} \rightarrow t
$$

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge) \#: reverse (residual edge) N: augmenting path

$$
\underset{9}{\rightarrow} \mathrm{~V}_{10} \rightarrow V_{4} \rightarrow \underset{12}{\rightarrow} V_{3} \rightarrow t
$$

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge)

Residual graph
\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge)

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge) \sim : augmenting path

$$
s \underset{8}{\rightarrow} V_{1} \underset{5}{\rightarrow} V_{3} t
$$

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge)
N: augmenting path

$$
s \underset{8}{\rightarrow} V_{1} \underset{5}{\rightarrow} V_{3} t
$$

\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge)
\#: reverse (residual edge)

Residual graph
\# : capacity (normal edge)
\#: flow
\#: leftover (residual edge) \#: reverse (residual edge)

No augmenting path.
DONE

FORD-FULKERSON method
how many times?

- while augmenting path exists how do we find one? increase flow on an augmenting path $\left\{\begin{array}{l}\text { increases } \\ \text { flow value. } \\ \text { O(path length })\end{array}\right.$ Arbitrarily?

Residual

FORD-FULKERSON method
how many times?

- while augmenting path exists how do we find one? Arbitrarily?

Residual

FORD-FULKERSON method
how many times?

- while augmenting path exists how do we find one? increase flow on an augmenting path $\left\{\begin{array}{l}\text { increases } \\ \text { flow value. } \\ \text { (path length })\end{array}\right.$ Arbitrarily?

Residual

FORD-FULKERSON method
how many times?

- while augmenting path exists how do we find one? Arbitrarily?

Residual

FORD-FULKERSON method
how many times?

- while augmenting path exists how do we find one? Arbitrarily?

Residual

FORD-FULKERSON method
how many times?

- while augmenting path exists how do we find one?

$$
\begin{aligned}
& \text { increase flow on an augmenting path }\left\{\begin{array}{l}
\text { increases } \\
\text { flow value. } \\
\text { O(path length })
\end{array}\right.
\end{aligned}
$$

Arbitrarily?
Residual

FORD-FULKERSON method
, how many times?

- while augmenting path exists how do we find one?

$$
\begin{aligned}
& \text { increase flow on an augmenting path }\left\{\begin{array}{l}
\text { increases } \\
\text { flow value. } \\
\text { (path length })
\end{array}\right.
\end{aligned}
$$

Arbitrarily? \rightarrow \#iterations $=M$
(or even DFS)

$$
\mu=10^{6}
$$

etc
Residual

FORD-FULKERSON method
how many times?

- while augmenting path exists how do we find one? increase flow on an augmenting path $\left\{\begin{array}{l}\text { increases } \\ \text { flow value. } \\ 0(\text { path length })\end{array}\right.$
Arbitrarily? No. In fact if capacities are irrational there are networks causing non-termination \& no convergence. (see links)
For integer capacities, \#iterations S MAX flow
For rational, transform to integer (multiply)

FORD-FULKERSON method
how many times?

- while augmenting path exists

$$
\begin{aligned}
& \text { ugmenting path exists } \\
& \text { increase flow on an augmenting path }\left\{\begin{array}{l}
\text { increases } \\
\text { flow value. } \\
0(\text { path length })
\end{array}\right.
\end{aligned}
$$

Residual

FORD-FULKERSON method
how many times?

- while augmenting path exists increase flow on an augmenting path $\left\{\begin{array}{l}\text { increases } \\ \text { flow value. } \\ \text { O(path length })\end{array}\right.$

Residual

FORD-FULKERSON method
how many times?

- while augmenting path exists increase flow on an augmenting path $\left\{\begin{array}{l}\text { increases } \\ \text { flow value. } \\ 0(\text { path length })\end{array}\right.$

Residual

FORD-FULKERSON method
how many times?

- while augmenting path exists use BFS to find one increase flow on an augmenting path $\left\{\begin{array}{l}\text { increases } \\ \text { flow value. } \\ \text { (path length })\end{array}\right.$

Residual

FORD-FULKERSON method
how many times?

- while augmenting path exists use BFS to find one: $O(E)$ increase flow on an augmenting path $\left\{\begin{array}{l}\text { increases } \\ \text { flow value. } \\ O(\text { path length })\end{array}\right.$

Using BFS: Edmonds-Karp algorithm: $O(V \cdot E)$ iterations so $O\left(V \cdot E^{2}\right)$ time
$O\left(V^{2} E\right)$ \& $O\left(V^{3}\right)$ algorithms also exist.

Finding a maximum bipartite matching

FINDING A MAXIMUM BIPARTITE MATCHING

All capacities $=1$

FINDING A MAXIMUM BIPARTITE MATCHING

FINDING A MAXIMUM BIPARTITE MATCHING

* it can be shown that integer input gives integer flow on edges

