GRAPHS

Connected

directed

acyclic

not connected

not directed

not acyclic

V-E+F=2 applies to any connected planar (in fact, to convex polyhedra)

by projection

V-E+F=2 applies to any connected planar (in fact, to convex polyhedra)

by projection

Induction on faces:

F=1 : : tree. E=V-1

V-E+F=2 applies to any connected planar (in fact, to convex polyhedra)
by projection Induction on faces:

F=1 : : tree. E=V-1

Remove an edge between 2 faces.

Remains connected. $F \rightarrow F-1$ $E \rightarrow E-1$

F>1:

V-E+F=2 applies to any connected planar (in fact, to convex polyhedra)

Induction on faces:

Induction on vertices

F=1: Tree.

F=E+1

F=E+1

F>1:
Remove an edge between 2 faces.

Remains connected. F→F-1 E→E-1

V-E+F=2 applies to any connected planar (in fact, to convex polyhedra)

graph (by projection) Induction on faces: Induction on vertices

F=1: Tree.

E=V-1

Induction on vertices

only loops

F=E+1

Remove an edge between Contract edge * 7 V→V-1 E→E-1

Remains connected. E-E-1

F>1:

V-E+F=2 applies to any connected planar (in tact, to convex polyhedra) Induction on faces: | Induction on vertices | Induction on edges | F=1 : | Tree. | V=1 : | F=E+1 | E=0 : one v one f · : one vertex one face F>1: Contract edge * 7 Remove an edge between 2 faces. V→V-1 E→E-1

Remains connected.

F→F-1

E→E-1

V-E+F=2 applies to any connected planar (in tact, to convex polyhedra) Induction on faces: Induction on vertices V=1:F=E+1 | Induction on edges V=1:F=E+1 | V=0:F=E+1 | V=0:F=E+1Contract edge × 7 Y E>1: if × ≠ y contract as before Remove an edge between 2 faces. V→V-1 E→E-1 else oremove as before Remains connected. $E \rightarrow \xi - 1$ & $F \rightarrow \xi - 1$ $V \rightarrow V - 1$

F → F - 1 E → E - 1

Every edge belongs to 1 or 2 faces \sum_{all faces} \in 2 \in 2 \in 1 \in 1 \in 2 \in 1 \i

Every edge belongs to 1 or 2 faces \[\sum_{\text{all faces}} \sum_{\text{all faces}} \]

Every face has >3 edges (for V>3) \(\sum_{\text{all faces}} = \rightarrow 3F

use the Euler formula V-E+F=2 to show that a connected plane graph has $E \le 3V-6$ Every edge belongs to 1 or 2 faces $\sum_{\text{all faces}} e \leq 2E$ Every face has $\gg 3$ edges (for V > 3) $\sum_{\text{all faces}} e \gg 3F$

to show that a connected plane graph has $E \le 3V-6$ ry edge belongs to 1 or 2 faces $\sum_{all\ faces} e \le 2E$

Every edge belongs to 1 or 2 faces
$$\sum_{\text{all faces}} e \leq 2E$$

Every face has $\gg 3$ edges (for $V > 3$) $\sum_{\text{all faces}} e \gg 3F$

Every edge belongs to 1 or 2 faces $\sum_{\text{all faces}} e \leq 2E$ Every face has >3 edges (for V>3) $\sum_{\text{all faces}} e > 3F$

$$E-\frac{2E}{3} \leq \sqrt{-2}$$

Every edge belongs to 1 or 2 faces \(\sum_{\text{all faces}} \) \(\sum_{\text{all faces}} \) \(2E \rightarrow 3F \)

Fuery face has > 3 edges (for V>3) \(\sum_{\text{all faces}} \)

$$E - \frac{2E}{3} \leq V - 2$$

$$\frac{3F}{2} - F \leq V - 2$$

E < 3V-6

E < 3V-6

$$E \le 3V-6$$
 $10 \le 15-6$
 111

Not planar

E ≤ 3V-6 10 ≤ 15-6 !!!

$$V - \xi + F = 2$$

$$5 - 10 + F = 2$$

$$F = 7$$
2E>3F
$$2 \cdot 10 \Rightarrow 3 \cdot 7$$

$$111$$

$$E \le 3V - 6$$
 $10 \le 15 - 6$
 111

$$V - \xi + F = 2$$

$$5 - 10 + F = 2$$

$$F = 7$$
2E>3F
$$2 \cdot 10 \Rightarrow 3 \cdot 7$$

$$111$$

$$E \le 3V-6$$
 $10 \le 15-6$
 111

$$V - E + F = 2$$

$$5 - 10 + F = 2$$

$$F = 7$$
2E > 3F
$$2 \cdot 10 \Rightarrow 3 \cdot 7$$

$$111$$

... or...
$$V - E + F = 2$$
 $2E > 3F$
 $5 - 10 + F = 2$ $2 \cdot 10 > 3 \cdot 7$
 $F = 7$!!!

$$E \le 3V-6$$
 $9 \le 18-6$ ok!
 $K_{3,3}$

All planar graphs have E < 3V-6 Some von-planar graphs can too

not iff

What if G has no triangles?

V-€+F=2

V-E+F=2 What if G has no triangles?

Every edge belongs to 1 or 2 faces $\sum_{\text{all faces}} e \leq 2E$ Every face has ≈ 24 edges (for V>4) ≈ 24 edges (for V>4)

$$\sum e \le 2E$$
 all faces

$$\sum_{\text{all faces}} e > 4F$$

$$E - \frac{E}{2} \leq \sqrt{-2}$$

$$E \le 3V-6$$
 $10 \le 15-6$
 111

NOT PLANAR

$$E \le 3V-6$$
 $10 \le 15-6$

$$V-E+F=2$$
... or... $5-10+F=2$
 $F=7$

$$=2$$
 2E)

for triangle free:
$$E \le 2V-4$$

 $9 \le 2\cdot6-4$

V=6, E=9

previous statement:

Every edge belongs to 1 or 2 faces
$$\sum_{\text{all faces}} e \leq 2E$$

Every face has $\gg 3$ edges (for $V > 3$) $\sum_{\text{all faces}} e \gg 3F$

Every edge belongs to 1 or 2 faces
$$\sum_{\text{all faces}} e \stackrel{?}{\approx} 2E$$

Every face has $\stackrel{?}{\approx} 3$ edges (for V>3) $\sum_{\text{all faces}} e \stackrel{?}{\approx} 3F$

$$E-F=V-2$$
 $E-\frac{3E}{3}=V-2$
 $E=3V-6$

e=3n-6

What is the average degree of a triangulation?

What is the average degree of a triangulation?

$$\frac{1}{n} \cdot \sum_{i=1}^{n} d(v_i)$$

$$e=3n-6$$

What is the average degree of a triangulation?

$$\frac{1}{n} \cdot \sum_{i=1}^{n} d(v_i) = \frac{1}{n} \cdot 2e$$

$$e=3n-6$$

What is the average degree of a triangulation? $\frac{1}{n} \cdot \sum_{i=1}^{n} d(v_i) = \frac{1}{n} \cdot 2e = \frac{6n-12}{n} \leq 6$

$$\frac{1}{n} \cdot \sum_{i=1}^{n} d(v_i) = \frac{1}{n} \cdot 2e = \frac{6n-12}{n} \le e$$

$$e=3n-6$$

What is the average degree of a triangulation?
$$\frac{1}{n} \cdot \sum_{i=1}^{n} d(v_i) = \frac{1}{n} \cdot 2e = \frac{6n-12}{n} \le 6$$

$$\frac{1}{n} \cdot \sum_{i=1}^{n} d(v_i) = \frac{1}{n} \cdot 2e = \frac{6n-12}{n} \le 6$$

& Immediately applies to any planar graph