GRAPHS

$$
G=\{V, E\}
$$

\& vertices \& edges
connected

directed

acyclic

not connected

not directed

not acyclic

Euler formula $V-E+F=2$
$V-E+F=2$ applies to any connected planar (in fact, to convex polyhedral ($\left.\begin{array}{c}\text { by projection }\end{array}\right)$

Euler formula $V-E+F=2$
$V-E+F=2$ applies to any connected planar $\binom{$ in fact, to convex polyhedral }{ by projection } Induction on faces:

$$
F=1: \sum\left\{\begin{array}{l}
\text { : tree } \\
E=v-1
\end{array}\right.
$$

Euler formula $V-E+F=2$
$V-E+F=2$ applies to any connected planar (in fact, to convex polyhedra)
Induction on faces:

$$
F=1: \sum \sqrt{E=v-1}
$$

F>1:
Remove an edge between
Remove an edge 2 faces.
Remains connected.

$$
F \rightarrow F-1 \quad E \rightarrow E-1
$$

Euler formula $V-E+F=2$
$V-E+F=2$ applies to any connected planar $\binom{$ in fact, to convex polyhedral }{ by projection }
Induction on faces: Induction on vertices

$$
F=1: \sum \underset{E=v-1}{ }
$$

$$
V=1: \begin{aligned}
& \text { only loops } \\
& F=E+1
\end{aligned}
$$

$\mathrm{F}>1$:
Remove an edge between
 2 faces.

Remains connected.

$$
F \rightarrow F-1 \quad E \rightarrow E-1
$$

Euler formula $V-E+F=2$
$V-E+F=2$ applies to any connected planar (in fact, to convex polyhedra)

F>1 :
Remove an edge between
2 faces.
$v>1:$
Contract edge $x \neq y$

$$
V \rightarrow V-1 \quad E \rightarrow E-1
$$

Euler formula $V-E+F=2$
$V-E+F=2$ applies to any connected planar $\begin{gathered}\text { graph } \\ \text { (in fact, to convex polyhedral) } \\ \text { by projection }\end{gathered}$

Euler formula $V-E+F=2$
$V-E+F=2$ applies to any connected planar $\begin{gathered}\text { graph } \\ \text { in fact, to convex polyhedral) } \\ \text { by projection }\end{gathered}$

use the Euler formula $V-E+F=2$ to show that a connected plane graph has $E \leqslant 3 V-6$

use the Euler formula $V-E+F=2$
to show that a connected plane graph has $E \leqslant 3 V-6$
Every edge belongs to 1 or 2 faces $\sum_{\text {all faces }} e \leqslant 2 E$

use the Euler formula $V-E+F=2$
to show that a connected plane graph has $E \leqslant 3 V-6$
Every edge belongs to 1 or 2 faces $\sum_{\text {all faces }} e \leqslant 2 E$
Every face has $\geqslant 3$ edges (for $V>3) \sum_{\text {all faces }} e \geqslant 3 F$

use the Euler formula $V-E+F=2$
to show that a connected plane graph has $E \leqslant 3 V-6$
$\left.\begin{array}{l}\text { Every edge belongs to } 1 \text { or } 2 \text { faces } \sum_{\text {all paces }} e \leqslant 2 E \\ \text { Every face has } \geqslant 3 \text { edges (for } V>3) \sum_{\text {all faces }} e \geqslant 3 F\end{array}\right\} 2 E \geqslant 3 F$

use the Euler formula $V-E+F=2$
to show that a connected plane graph has $E \leqslant 3 V-6$
$\left.\begin{array}{l}\text { Every edge belongs to } 1 \text { or } 2 \text { faces } \sum_{\text {all faces }} e \leqslant 2 E \\ \text { Every face has } \geqslant 3 \text { edges }(\text { for } V>3) \sum_{\text {all faces }} e \geqslant 3 F\end{array}\right\} 2 E \geqslant 3 F$

$$
E-F=V-2
$$

use the Euler formula $V-E+F=2$
to show that a connected plane graph has $E \leqslant 3 V-6$
$\left.\begin{array}{l}\text { Every edge belongs to } 1 \text { or } 2 \text { faces } \sum_{\text {all faces }} e \leqslant 2 E \\ \text { Every face has } \geqslant 3 \text { edges }(\text { for } V>3) \sum_{\text {all faces }} e \geqslant 3 F\end{array}\right\} 2 E \geqslant 3 F$

$$
\begin{aligned}
E-F & =V-2 \\
E-\frac{2 E}{3} & \leq V-2 \\
E & \leqslant 3 V-6
\end{aligned}
$$

use the Euler formula $V-E+F=2$
to show that a connected plane graph has $E \leqslant 3 V-6$
$\left.\begin{array}{l}\text { Every edge belongs to } 1 \text { or } 2 \text { faces } \sum_{\text {all faces }} e \leqslant 2 E \\ \text { Every face has } \geqslant 3 \text { edges }(\text { for } V>3) \sum_{\text {all faces }} e \geqslant 3 F\end{array}\right\} 2 E \geqslant 3 F$

$$
\begin{array}{rlrl}
E-F & =V-2 & E-F & =V-2 \\
E-\frac{2 E}{3} & \leqslant V-2 & \frac{3 F}{2}-F & \leqslant V-2 \\
E & \leqslant 3 V-6 & F & \leqslant 2 V-4
\end{array}
$$

$v \leq 2$?

$$
E \leq 3 v-6
$$

$$
E \leq 3 v-6
$$

$$
\begin{gathered}
E \leq 3 V-6 \\
10 \leq 15-6 \\
!!!
\end{gathered}
$$

Not planar

$$
\begin{gathered}
E \leq 3 V-6 \\
10 \leq 15-6 \\
!!!
\end{gathered}
$$

$$
\ldots \text { OR... }\left[\begin{array}{cc}
V-E+F=2 & 2 E \geqslant 3 F \\
5-10+F=2 & 2 \cdot 10 \geqslant 3 \cdot 7 \\
F=7 & !!!
\end{array}\right]
$$

$$
\begin{gathered}
E \leq 3 V-6 \\
10 \leq 15-6 \\
!!!
\end{gathered}
$$

$$
\ldots \text { Or... }\left[\begin{array}{cc}
V-E+F=2 & 2 E \geqslant 3 F \\
5-10+F=2 & 2 \cdot 10 \geqslant 3.7 \\
F=7 & !!!
\end{array}\right]
$$

$$
E \leq 3 v-6
$$

$$
\begin{gathered}
E \leq 3 V-6 \\
10 \leq 15-6 \\
!!!
\end{gathered}
$$

$$
\ldots \text { Or... }\left[\begin{array}{cc}
V-E+F=2 & 2 E \geqslant 3 F \\
5-10+F=2 & 2 \cdot 10 \geqslant 3 \cdot 7 \\
F=7 & !!!
\end{array}\right]
$$

$$
\begin{aligned}
& E \leq 3 V-6 \\
& 9 \leq 18-6 \text { ok! }
\end{aligned}
$$

$$
\begin{gathered}
E \leq 3 V-6 \\
10 \leq 15-6 \\
!!!
\end{gathered}
$$

$$
\ldots \text { OR... }\left[\begin{array}{cc}
V-E+F=2 & 2 E \geqslant 3 F \\
5-10+F=2 & 2 \cdot 10 \geqslant 3 \cdot 7 \\
F=7 & !!!
\end{array}\right]
$$

$$
E \leq 3 v-6
$$

$$
9 \leq 18-6 \text { ok! }
$$

not iff
All planar graphs have $\epsilon \leqslant 3 v-6$ Some non-planar graphs cantor
$V-E+F=2 \quad$ What if G has no triangles?

$V-E+F=2 \quad$ What if G has no triangles?
$\left.\begin{array}{l}\begin{array}{l}\text { Every edge belongs to } 1 \text { or } 2 \text { faces } \\ \sum_{\text {all faces }} e \leq 2 E \\ \text { Every face has } \geqslant 4 \text { edges }(\text { for } V>4)\end{array} \sum_{\text {all faces }} e \geqslant 4 F\end{array}\right\} \xlongequal{E \geqslant 2 F}$

$V-E+F=2 \quad$ What if G has no triangles?
Every edge belongs to 1 or 2 faces $\left.\sum_{\text {all laces }} e \leqslant 2 E\right\} \quad E \geqslant 2 F$ Every face has $\geqslant 2$ edges (for $\left.V>4) \quad \sum_{\text {all faces }} e \geqslant 4 F\right\}$

$$
\begin{aligned}
& E-F=V-2 \\
& E-\frac{E}{2} \leqslant V-2 \\
& \frac{E \leqslant 2 V-4}{\text { instead of } \leqslant 3 V-6}
\end{aligned}
$$

$$
\begin{gathered}
E \leqslant 3 V-6 \\
10 \leqslant 15-6 \\
!!!
\end{gathered} \quad \ldots O R \ldots\left[\begin{array}{cc}
V-E+F=2 & 2 E \geqslant 3 F \\
5-10+F=2 & 2 \cdot 10 \geqslant 3 \cdot 7 \\
F=7 & !!!
\end{array}\right]
$$

Not planar
for triangle free: $E \leq 2 V-4$

$$
\begin{array}{cc}
E \leqslant 3 V-6 \\
10 \leqslant 15-6 \\
!!! \\
\text { for triangle free: } E \leqslant 2 V-4 & 2 E \geqslant 3 F \\
F=7 & 2 \cdot 10 \geqslant 3.7 \\
5-10+F=2
\end{array} \quad \text { NOT PLANAR }
$$

$$
\begin{aligned}
& \begin{array}{c}
E \leqslant 3 V-6 \\
10 \leqslant 15-6 \\
!!!
\end{array} \quad \cdots O R \ldots\left[\begin{array}{cc}
V-E+F=2 & 2 E \geqslant 3 F \\
5-10+F=2 & 2 \cdot 10 \geqslant 3.7 \\
F=7 & !!!
\end{array}\right] \\
& \text { for triangle free: } E \leq 2 v-4 \\
& 9 \leq 2 \cdot 6-4 \\
& \text { !!! } \\
& \text { NOT PLANAR } \quad v=6, E=9 \\
& \text { > } \\
& \text { poses) }
\end{aligned}
$$

$$
e=3 n-6
$$

Why?

$$
e=3 n-6
$$

$$
V-E+F=2
$$

Why?
Every edge belongs to 1 or 2 faces $\sum_{\text {all laces }} e \leqslant 2 E\{2 E \geqslant 3 F$
Every face has $\geqslant 3$ edges (for $V>3$) $\sum_{\text {all faces }} e \geqslant 3 F$ \}

$$
e=3 n-6
$$

$$
V-E+F=2
$$

 Every face has $\overline{\psi_{k}} 3$ edges (for $V>3$) $\left.\sum_{\text {all faces }} e \bar{V}^{2} 3 F\right\}$

$$
e=3 n-6
$$

$$
V-E+F=2
$$

Why?

$$
\begin{aligned}
E-F & =V-2 \\
E-\frac{2 E}{3} & =V-2 \\
E & =3 V-6
\end{aligned}
$$

$$
e=3 n-6
$$

What is the average degree of a triangulation?

$$
e=3 n-6
$$

What is the average degree of a triangulation?

$$
\frac{1}{n} \cdot \sum_{i=1}^{n} d\left(v_{i}\right)
$$

$$
e=3 n-6
$$

What is the average degree of a triangulation?

$$
\frac{1}{n} \cdot \sum_{i=1}^{n} d\left(v_{i}\right)=\frac{1}{n} \cdot 2 e
$$

$e=3 n-6$
What is the average degree of a triangulation?

$$
\frac{1}{n} \cdot \sum_{i=1}^{n} d\left(v_{i}\right)=\frac{1}{n} \cdot 2 e=\frac{6 n-12}{n} \leq 6
$$

What is the average degree of a triangulation?

$$
\frac{1}{n} \cdot \sum_{i=1}^{n} d\left(v_{i}\right)=\frac{1}{n} \cdot 2 e=\frac{6 n-12}{n} \leq 6
$$

C Every triangulation has a vertex w/ degree $\leqslant 5$
(but might only have 12)
© Immediately applies to any planar graph

