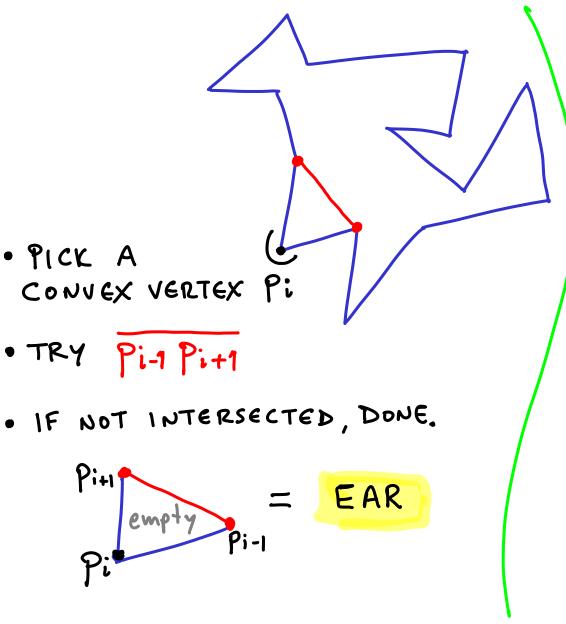
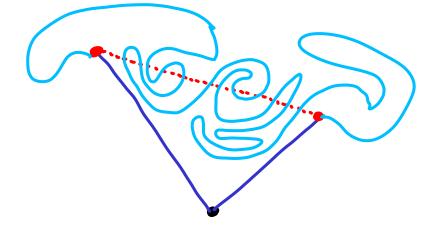


- IF NOT INTERSECTED, DONE.
- TRY Pi-1 Pi+1
- · PICK A CONVEX VERTEX Pi

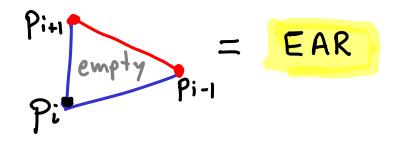


What if the triangle is not empty?



• PICK A CONVEX VERTEX Pi

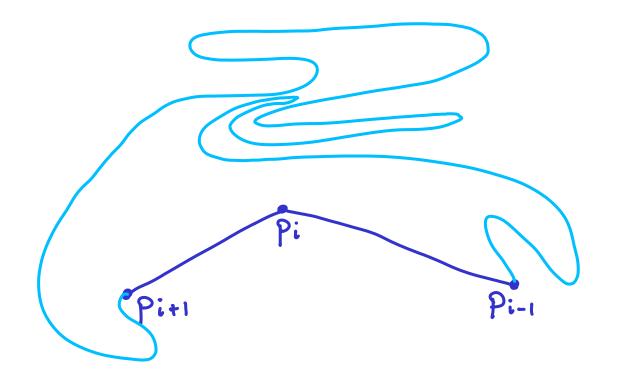
- TRY Pi-1 Pi+1
- IF NOT INTERSECTED, DONE.

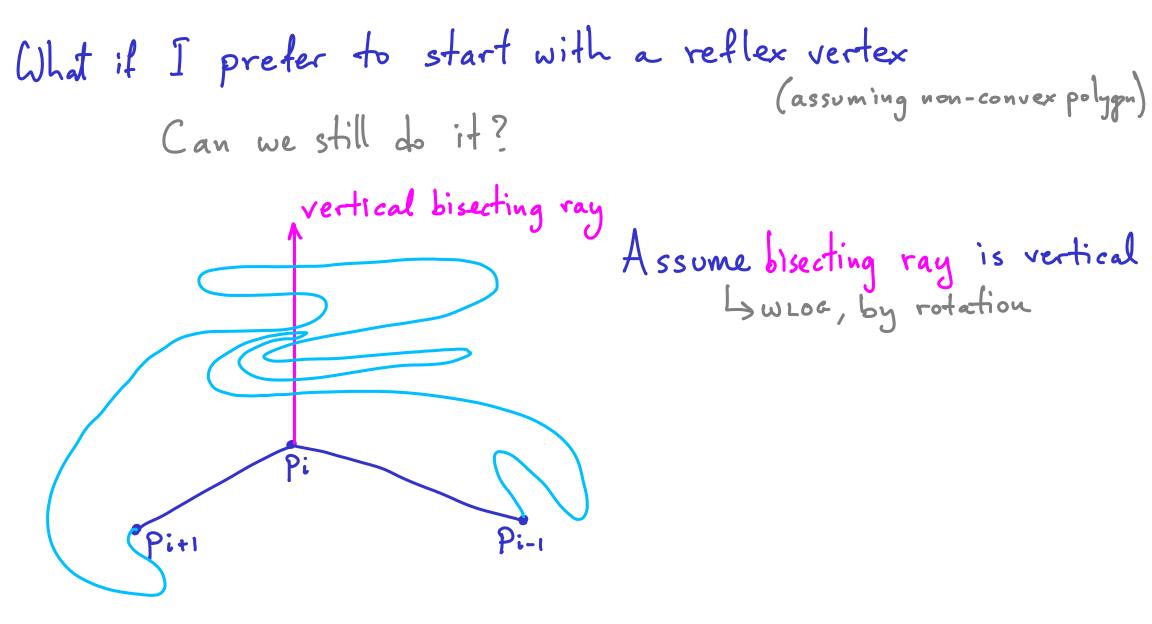


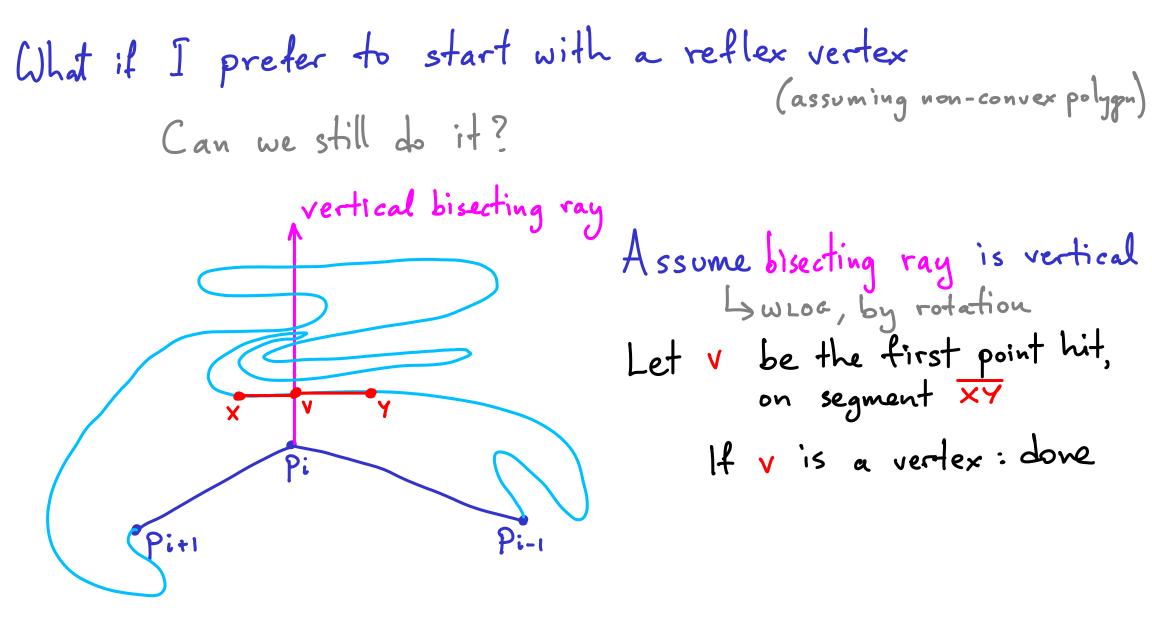
What if the triangle is not empty? SWEEP parallel to <u>Pi-IPi+I</u> JOIN to first vertex found. Done

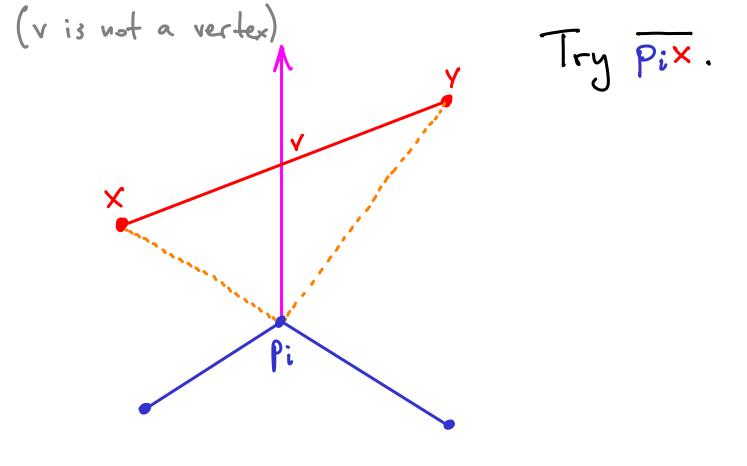
TIME: O(n)

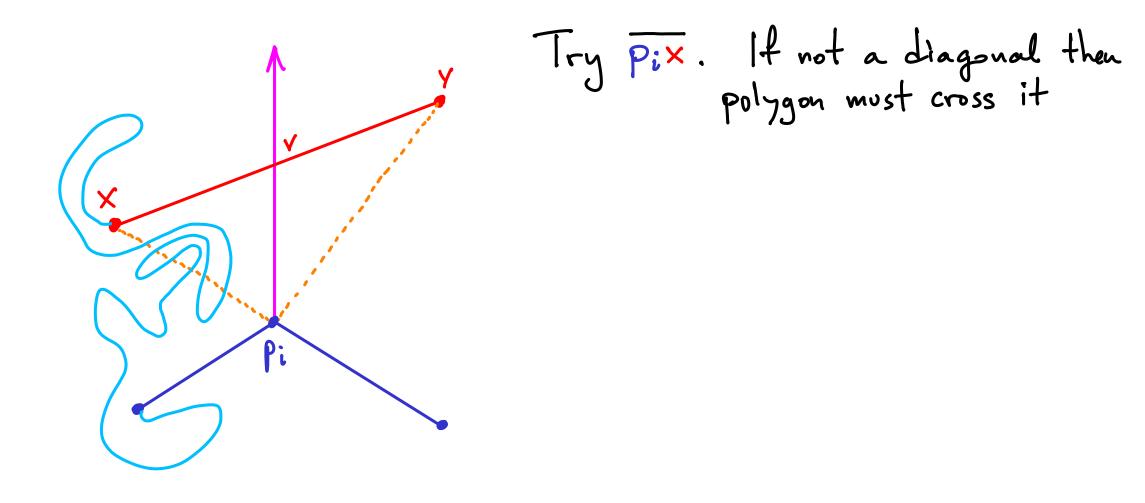
(assumes some basic knowledge of comp.geom, for instance that testing if a point is above a line, or testing if two segments intersect, takes constant time.)









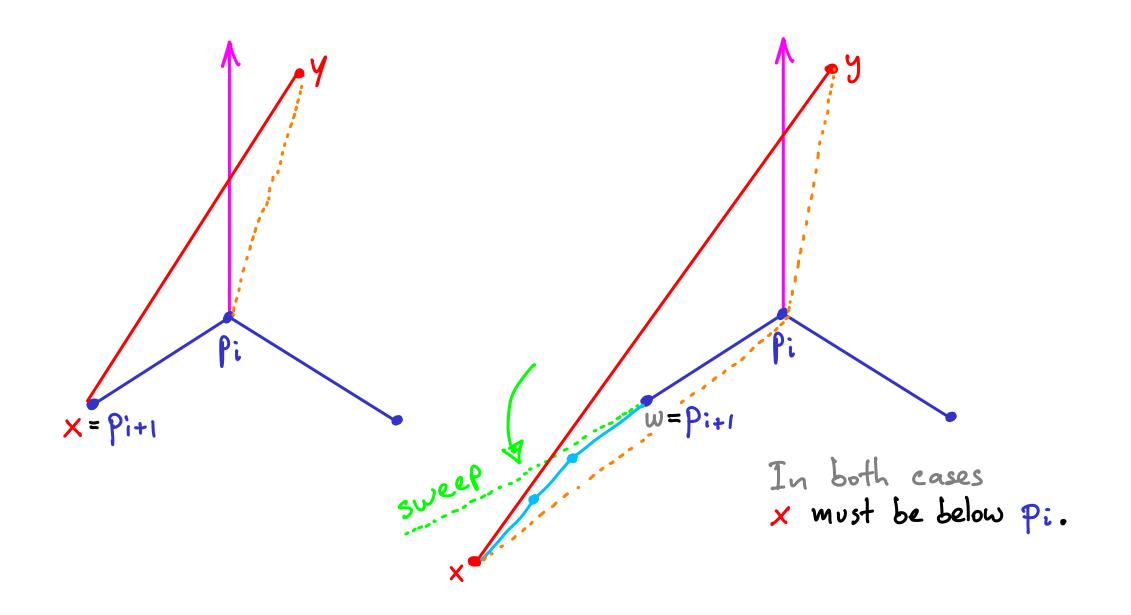


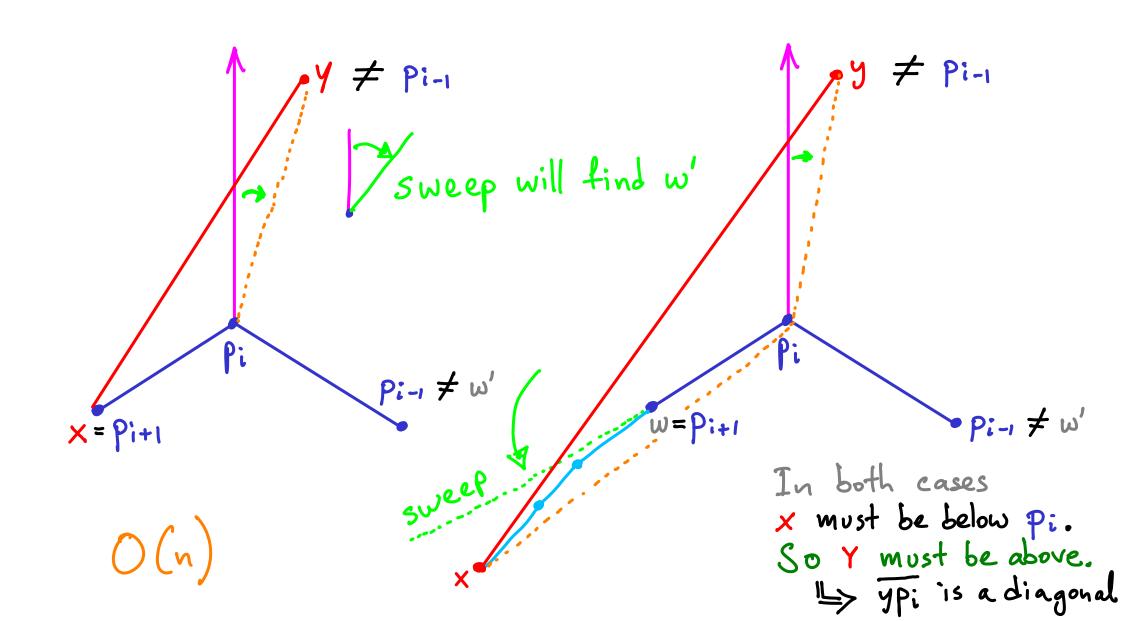
Try Pix. If not a diagonal then
polygon must cross it
Then sweep inside
$$\triangle \times vpi$$

[rotational fixed at pi]
Because \triangle not empty, will hit w.
QED

Try Pix. If not a diagonal then
polygon must cross it
Then sweep inside
$$\triangle xvp:$$

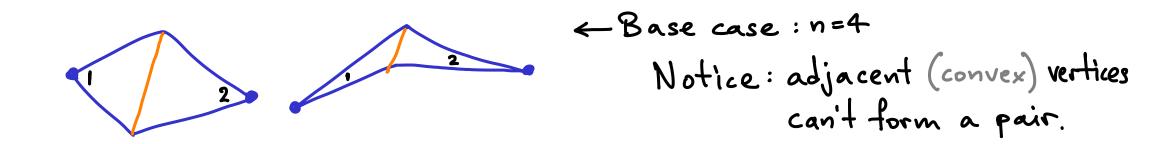
[rotational fixed at pi]
Because \triangle not empty, will hit \underline{w} .
QED ??? No
What if \overline{wpi} is a polygon edge?
 $\underline{b} w = Pi+1$
What if $x = Pi+1$?

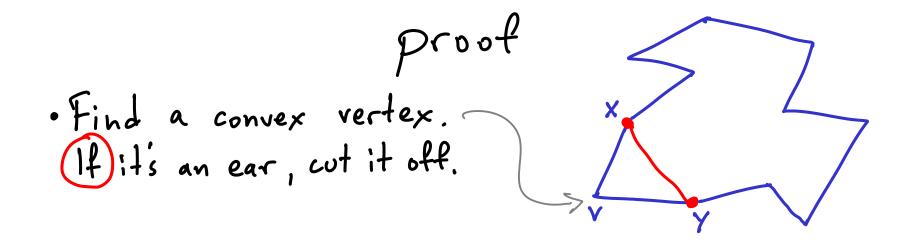


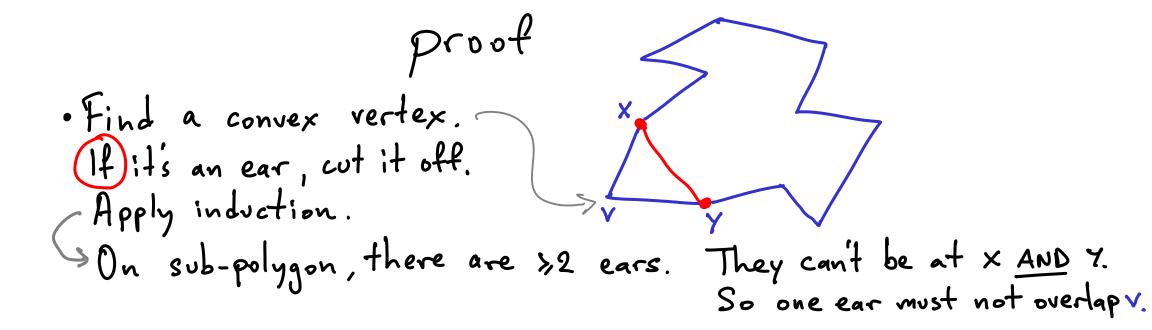


TRIANGULATION partition of polygon into triangles insertion of diagonals while possible How DO WE KNOW IT EXISTS FOR EVERY N-gon?

Meister's two-ear theorem





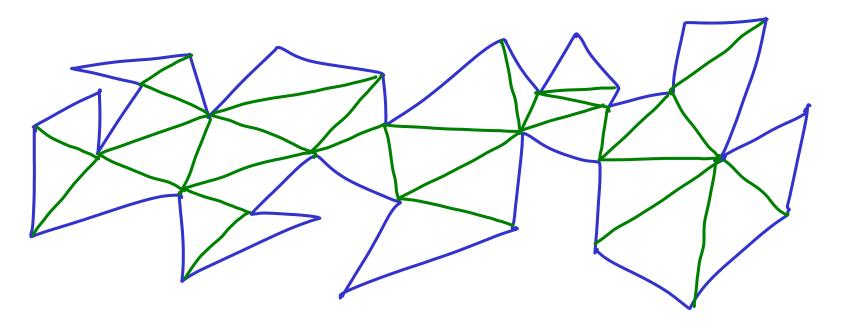


· tind a convex vertex. Apply induction. > On sub-polygon, there are >2 ears. They can't be at X AND Y. So one ear must not overlap v. Else: v is not an ear.

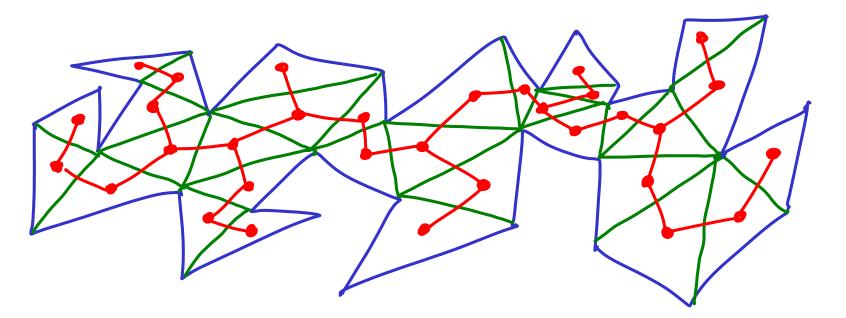
· tind a convex vertex. If it's an ear, cut it off. Apply induction. > On sub-polygon, there are >2 ears. They can't be at X AND Y. So one ear must not overlap. Else: v is not an ear. Then find diagonal vs as shown before.

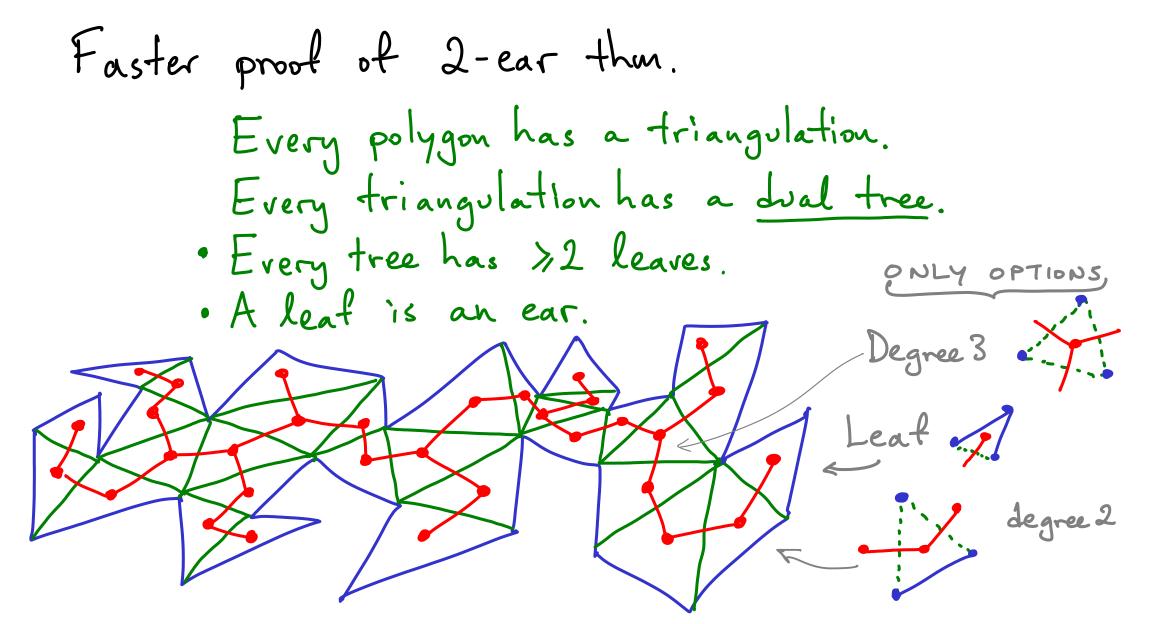
· Find a convex vertex. Apply induction. "On sub-polygon, there are >2 ears. They can't be at X AND Y. So one ear must not overlap v. Then find diagonal vs as shown before. Else: v is not an ear. L) By induction, both sub-polygons have 2 ears As above, not both can be on $\sqrt{5}$. On each side take the ear not at vors. RED.

Faster proof of 2-ear thm. Every polygon has a triangulation.



Faster proof of 2-ear thm. Every polygon has a triangulation. • Every triangulation has a dual tree.





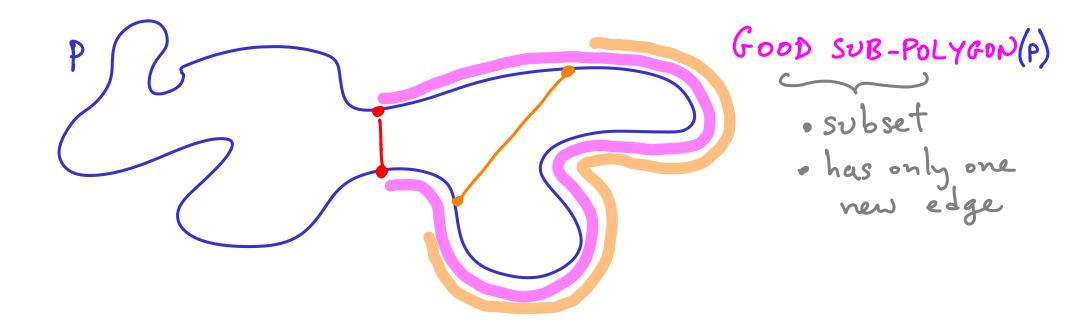
HOW LONG DOES IT TAKE TO FIND ONE EAR?

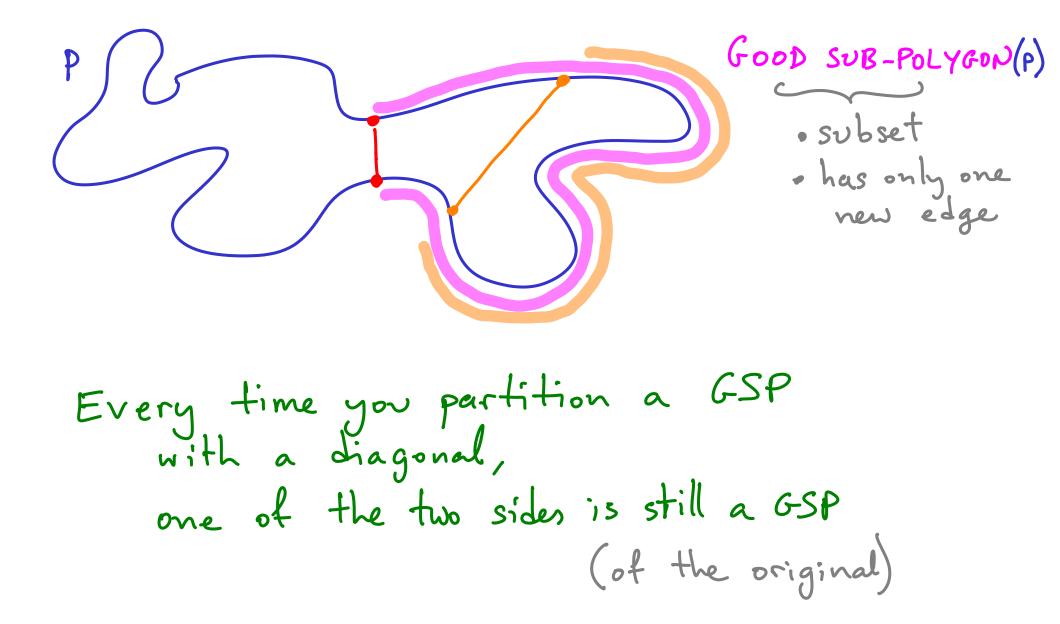
How LONG DOES IT TAKE TO FIND ONE EAR? Ly just finding diagonal and searching one side : 0/n²) HOW LONG DOES IT TAKE TO FIND ONE EAR? Ly just finding diagonal and searching one side : 0/n2) L) A little better: · List all convex vertices . Try each one : (n)

HOW LONG DOES IT TAKE TO FIND ONE EAR? Ly just finding diagonal and searching one side : O(n2) L) A little better: still ξ - List all convex vertices $O(n^2)$ ξ . Try each one : O(n)

HOW LONG DOES IT TAKE TO FIND ONE EAR? Ly just finding diagonal and searching one side : 0(n2) Lo A Little better: still E - List all convex vertices O(n²) E - Try each one : O(n) Lo by looking for reflex vertices inside

HOW LONG DOES IT TAKE TO FIND ONE EAR? Ly just finding diagonal and searching one side : O(n2) What about searching both sides? You would have to make unbalanced cuts and go the wrong way each time to get $O(n^2)$



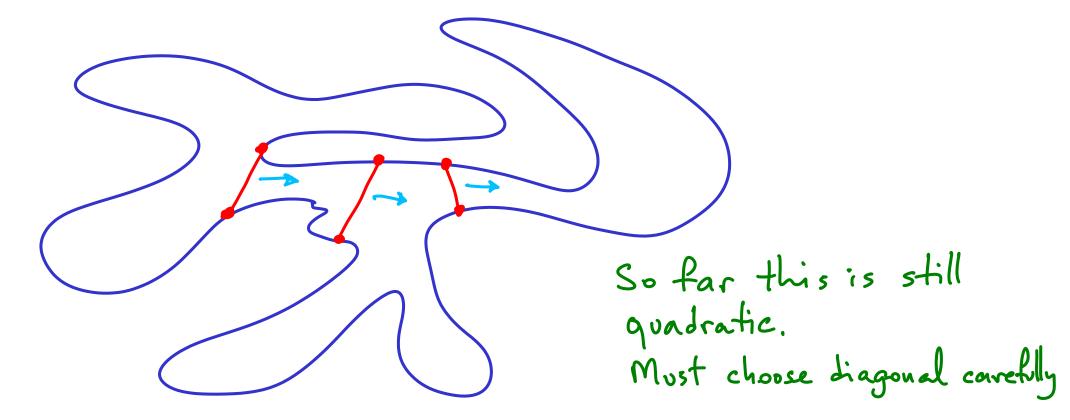


FINDING on EAR in LINEAR TIME

· Pick any vertex : test if its an ear O(n) by sweep

FINDING on EAR in LINEAR TIME · Pick any vertex : test if its an ear O(n) by sweep • If not -> form a diagonal O(n) -> choose one side, arbitrarily > find ear on that side

So our first choice of sub-polygon was arbitrary but we will choose the GSP side each time



So our first choice of sub-polygon was arbitrary but we will choose the GSP side each time

