

MATCHING in a BIPARTITE GRAPH ex: edges represent mutual consent [wiki: E represent men approved by women, & all men will take any woman who wants them!] Goal : maximize # independent edges

(like 1 round of greedy edge-coloring)

e
$$|N(S)| \ge |S|$$
 but a_{\bullet} unmatched
possible, extend this alternating sequence:
Add/label a_i if it matches to b_i
Add b_i if it is in $N(a_{\bullet}...a_{i-r})$
- Can this end in A at some a_k ?
No because $|N(a_{\bullet}...a_k)| \ge k+1$
(& we've only used $b_1...b_k$
 \exists some other $b \neq b_1...b_k$ in $N(a_{\bullet}...a_k)$

