

MATCHING in a BIPARTITE GRAPH
ex: edges represent mutual consent
$\left[\begin{array}{r}\text { wiki: E represent men approved by women, } \\ \\ \\ \\ \text { \& all men will take any woman } \\ \text { who warts them! }\end{array}\right]$
Goal: maximize \# independent edges
(like 1 round of greedy edge-coloring)

MATCHING in a BIPARTITE GRAPH
\int - il no incident edges, no hope

- if \exists edge at u \& it is not marked then $\exists x$ that is matched el sewhere. (otherwise match $x \leftrightarrow u$)
s. $\exists y$ s.t. $x \leftrightarrow y$
which means all other edges at y are not selected, etc

MATCHING in a BIPARTITE GRAPH
\rightarrow - if no incident edges, no hope

- if \exists edge at u \& it is not marked then $\exists x$ that is matched elsewhere. (otherwise match $x \leftrightarrow u$)
so $\exists y$ s.t. $x \leftrightarrow y$
which means all other edges at y are not selected, etc

AUGMENTING PATH

Is a matching optimal if no augmenting path exists?
"homework"

Algorithm \& time complexity to find an avg. path?
... or an optimal matching?

Start w/ best matching. Suppose $|N(s)| \geqslant|S|$ but a_{0} unmatched

Start w/ best matching. Suppose $|N(S)| \geqslant|S|$ but a_{0} unmatched
 $\exists b_{1}$ adjacent to $a_{0} \quad\left(\left|N\left(a_{0}\right)\right| \geqslant 1\right)$

Start w/ best matching. Suppose $|N(s)| \geqslant|s|$ but a_{0} unmatched
 $\exists b_{1}$ adjacent to $a_{0} \quad\left(\left|N\left(a_{0}\right)\right| \geqslant 1\right)$ b_{1} matches to some a_{1} (otherwise match a_{0} to b_{1})

Start w/ best matching. Suppose $|N(S)| \geqslant|s|$ but a_{0} unmatched

$\exists b_{1} \quad$ adjacent to $a_{0} \quad\left(\left|N\left(a_{0}\right)\right| \geqslant 1\right)$
b_{1} matches to some a_{1}
(otherwise match a_{0} to b_{1})
Next, if \exists other vertex adjacent to a_{0} or a_{1} label it b_{2}

Start w/ best matching. Suppose $|N(s)| \geqslant|S|$ but a_{0} unmatched

$\exists b_{1}$ adjacent to $a_{0} \quad\left(\left|N\left(a_{0}\right)\right| \geqslant 1\right)$
b_{1} matches to some a_{1}
(otherwise match a_{0} to b_{1})
Next, if \exists other vertex adjacent to a_{0} or a_{1} label it b_{2}
and if b_{2} matches to something, label it a_{2}

Start w/ best matching. Suppose $|N(S)| \geqslant|S|$ but a_{0} unmatched

$\exists b_{1}$ adjacent to $a_{0} \quad\left(\left|N\left(a_{0}\right)\right| \geqslant 1\right)$
b_{1} matches to some a_{1}
(otherwise match a_{0} to b_{1})
Next, if \exists other vertex adjacent to a_{0} or a_{1} label it b_{2}
and if b_{2} matches to something, label it a_{2}
While possible, extend this alternating sequence:

$$
a_{0} b_{1} a_{1} b_{2} a_{2} \ldots
$$

Add/label a_{i} if it matches to b_{i}
Add b_{i} if it is in $N\left(\alpha_{0} \ldots \alpha_{i-1}\right)$

Start w/ best matching. Suppose $|N(s)| \geqslant|s|$ but a_{0} unmatched

$\exists b_{1}$ adjacent to $a_{0} \quad\left(\left|N\left(a_{0}\right)\right| \geqslant 1\right)$
b_{1} matches to some a_{1}
(otherwise match a_{0} to b_{1})
Next, if \exists other vertex adjacent to a_{0} or a_{1} label it b_{2}
and if b_{2} matches to something, label it a_{2}
While possible, extend this alternating sequence:

$$
a_{0} b_{1} a_{1} b_{2} a_{2} \ldots b_{k}
$$

Add/label a_{i} if it matches to b_{i} $a_{0} b_{1} a_{1} b_{2} a_{2} \ldots a_{k}$?

Add b_{i} if it is in $N\left(\alpha_{0} \ldots \alpha_{i-1}\right)$

Start w/ best matching. Suppose $|N(s)| \geqslant|s|$ but a_{0} unmatched

While possible, extend this alternating sequence:
Add/label a_{i} if it matches to b_{i}
Add b_{i} if it is in $N\left(\alpha_{0} \ldots \alpha_{i-1}\right)$
-Can this end in A at some a_{k} ?
No because $\left|N\left(a_{0} \ldots a_{k}\right)\right| \geqslant k+1$
\& were only used $b_{1} \ldots b_{k}$
\exists some other $b \neq b_{1} \ldots b_{k}$ in $N\left(a_{0} \ldots a_{k}\right)$

Start w/ best matching. Suppose $|N(s)| \geqslant|S|$ but a_{0} unmatched *

b_{k} doesn't match to any $a_{0} \ldots a_{k-1}$ by definition
\& doesn't match to any $a \neq a_{0} \ldots a_{k-1}$ because we could extend the sequence

$$
\underbrace{b_{k} \leadsto \text { some } a_{i}(i<k) \leadsto b_{i} \rightarrow}
$$

$a_{0} b_{1} a_{1} b_{2} a_{2} \ldots b_{k} \sim \neq$ AUGMENTING PATH: contradict *

