
COMP 160 — Informal Recap

This isn’t a substitute for a textbook or the class notes. It is a set of explanations that might
be of assistance while you are reading the class notes or the book. I’m trying to highlight
what the more important concepts are.

This is an ongoing draft. Please feel free to report bugs and unclear descriptions.

Contents:

Big-O
Recurrences.
Comparison-based sorting (mainly heap sort)
Decision trees and the lower bound for comparison sorting
Counting sort and radix sort
Indicator random variables
Selection (deterministic)
Selection (randomized)
Quicksort (randomized analysis)
Alternate Quicksort analysis
Binary search trees
Worst, best, and expected cost of constructing random BST
Red-black trees
Applications of dynamic BSTs (e.g. range counting and interval trees)
Dynamic programming
Hashing
Amortization
BFS and DFS
Topological sort, and strongly connected components
Minimum spanning trees (intro)
Kruskal’s MST algorithm
Prim’s MST algorithm
Single source shortest paths intro
The Bellman-Ford SSSP algorithm
Dijkstra’s SSSP algorithm
NP-completeness

1

Big-O

You should understand what f(n) = O(g(n)) means mathematically. Same for Ω and Θ.
When analyzing functions asymptotically, we basically don’t care about certain constants:
mainly (but not only) additive constants and leading multiplicative constants. For example
if you’re given a quadratic function, at this level we don’t care if it is 5n2 or 37n2, and we
don’t care if there are less significant terms added on (for instance something linear, like
37n2 + 83n). Asymptotically, all these functions are indistinguishable. This justifies having
the constant in the mathematical definition of big-O. For example, 132n = O(n2). Remember
that the big-O can be thought of as a ≤. In fact, by definition we have 132n ≤ c · n2. The c
is there, because we don’t care which quadratic function we’re comparing 132n to. As long
as it is smaller than some quadratic function, we’re happy. The intuition is that 132n is not
more significant than the class of quadratic functions.

So, you should know the definition and what it means in terms of comparing functions.
You should know what it takes to compare two functions asymptotically. The main recipe
is to set up the mathematical definition, and then find some combination of constants that
makes it work. Always remember that the definition is meant to hold for a range of large
enough n. It is your job to decide what range this will be (i.e., pick some n0), and establish
that there is a constant (c, as used above) that works for the entire range n > n0. Getting
the constant c to be small is a secondary goal. For lower bounds (using Ω), the secondary
goal is instead to get the constant as large as possible. Remember that you have to use a
different constant for the upper and lower bounds, if you’re trying to get Θ. Ideally they
will actually end up being the same number. Sometimes we can’t achieve that.

It is critical that you understand how to compare functions asymptotically, even if infor-
mally. We will be doing this for the rest of the course.

Finally, I will mention a convenient way of showing that f(n) = O(g(n)).
Exaggerate and simplify. Remember, g(n) is supposed to be a simpler function than
f(n). Also, we are upper-bounding f(n), so it’s ok to exaggerate. For example:
f(n) = 223n2 + 106 log3 n − 14. We want to show that this is O(n2). We can exaggerate
f(n) by adding 14, and by replacing each log3 n term with n2, thus obtaining a function
f ′(n) ≥ f(n), for large enough values of n. This range is determined by comparing the
replaced terms with the new ones. For example, for small n if we replace log3 n with n2 we
are not exaggerating. In any case, f ′(n) = (223 + 106)n2, and this is O(n2) by definition.
Thus, for large enough n we have: f(n) ≤ f ′(n) = O(n2).
For a matching lower bound, we could subtract all the log3 n terms from f(n), and replace
the −14 with −14n2. In both cases we make f(n) smaller, thus obtaining f(n) ≥ f ′′(n) =
223n2 − 14n2 = Ω(n2). Therefore f(n) = Ω(n2).

2

Recurrences

Recurrences will be popping up frequently in the course. They are often critical for un-
derstanding how good or how bad algorithms are. All we care about is getting asymptotic
results, so in some sense this topic is easier than what you may have seen in a discrete math
course, where more attention is given to finding all constants.

You need to be able to realize when an algorithm is recursive, and then how to write
down the time complexity, T (n), in a recursive way. Once you have a recursive relation, you
should be aware that there are three main ways of solving it.

A typical recurrence will be in the form T (n) = a1 ·T (n
b1

)+a2 ·T (n
b2

)+ . . .+f(n). In other
words, there will be a non-recursive part, f(n), and a collection of recursive calls. These
might not all have the same sub-problem sizes, hence the various bi. In algorithms, any ai
value will be a positive integer. We don’t half-recurse. Given this fact, any b value must
be greater than 1, otherwise the problems get bigger and bigger, and you’ll have an infinite
amount of work to do.

Recursion trees are typically described as being a tool just for providing intuition,
although as they can give a pretty precise and convincing answer. When drawing a recursion
tree, you always start with the non-recursive f(n) at the root, and you assign a set of children;
one per recursive call. Each such child will have the form T (n

bi
), for some value bi. Once

you’ve done this, it’s time to replace each such term with a non-recursive amount of work.
This work will be f(n

bi
). What you’re doing is simply rewriting your initial recurrence relation

for T (n), using a different parameter. In other words, n
b

is your new n. Thus each current
child becomes the root of a new recursion tree. It will have just as many children as its
parent, and so on. However, all of this is only true while we have not encountered any base
cases. The easiest kind of trees will be fully balanced, resulting from “nice” recurrences
where there is only one value b. In other words there is only one sub-problem size to deal
with. This makes every path from the root end at a base case after the same number of
levels. That will not always be true.

The point of drawing the tree is to somehow count the total amount of non-recursive
work. Typically this is done by counting the amount of work in each level, and finding out
how many levels there are. By noticing a pattern in the amount of work involved for a few
levels at the top, one is hopefully able to find an expression for the amount of work, as a
function of the level number.1 For a full (symmetric) tree, the total amount of work will be a
summation over all levels, although to be a bit more formal you also add the number of base
cases (i.e., leaves in the tree). If the recursion tree is not symmetric, then there will be base
cases on various levels. A typical way to deal with this is to obtain an upper bound and lower
bound separately. For an upper bound, we assume that all levels are full. In other words, we
ignore the fact that some base cases have occurred, and let our expression for the amount
of work per level be summed over all levels (whereas in reality the expression degenerates
below the lowest full level). For a lower bound, we only compute the sum of work-per-level
over all full levels, i.e., the ones that don’t have base cases. In other words, both the upper
and lower bounds are calculated on full trees, that are respectively an exaggeration and an
underestimate of the true tree.

1To make this approach formal, one would have to prove that the expression will hold over all levels.

3

The second method for solving recurrences is the substitution method. There is a
standard recipe for this. First you have to guess a solution. This is done either by intuition,
or by getting a hint from a recursion tree, or, of course, you could actually guess. When
you guess a solution, if it is expressed asymptotically, you must instead express it precisely,
using the constant in the mathematical definition of O or Ω. For instance, if you’ve guessed
T (n) = O(n2), you must express this as T (n) ≤ c · n2. This is critical. It is also critical
to use specific constants for the non-recursive part of T (n) (meaning, f(n)). For example,
if the non-recursive part is Θ(n3), you have to state that this really means d · n3, for some
positive constant d.
The second step is to use induction: assume that your guess is valid for all k < n. That
means that if you write the recurrence with T (k) instead of T (n), you have the right to
assume that your guess holds for T (k). As an example, if you have T (n) = T (n − 5) + n2,
and you’ve guessed that T (n) = O(n3), which really means you’ve guessed T (n) ≤ c · n3,
then for any k < n you can assume that T (k) ≤ c · k3. The only reason you’re doing this is
so that you don’t have to deal with the recursive parts of the relation. You get rid of them,
because each one has a parameter that is smaller than n, fitting the description of k. In the
previous example, n−5 is smaller than n, so we can assume that T (n−5) ≤ c · (n−5)3.
By now you should be able to express T (n) in a way that has no big-O notation, and no
recursive parts. If your guess involves a ≤ or a ≥ (for instance because you’re just focusing
on getting an upper or lower bound), that will work its way into the original recurrence
when you make the substitution. What I mean is even if you had T (n) = · · ·, you may get
an inequality after substituting. The rest is just arithmetic and algebra, not to imply that
it is always trivial. The objective is to establish that your guess is true, for n. So far you’ve
assumed that it’s true for all k < n. It is crucial that you get the non-asymptotic guess
exactly right. So, whatever you end up with for T (n) must be separated into two parts: the
first part is exactly what your guess was; the second part is all the leftovers. If you are
trying to prove an upper bound, then these leftovers must be zero or less. If you’re trying
to prove a lower bound, they must be zero or more. Abstractly, what’s going on here (using
the upper bound as an example) is that you have made a guess in the form T < X, and
you end up getting something like T < X + Y . So you have to be able to claim that Y is
non-positive in order to actually have T < X. The great thing is, you get to affect these
leftovers by your initial choice of constants (like d for the non-asymptotic part of T (n), and
c when you made your guess). Your goal is to assign some combination of values that makes
the leftovers lean in your favor. These constants are your friends. To recap, the recipe is:

• guess a non-asymptotic solution for T (n) (i.e., use a constant, not big-O)

• express the non-recursive part of T (n), non-asymptotically (i.e. use a constant)

• assume your guess is true for k < n

• for any recursive call in T (n), substitute in your guessed solution.

• by now you have T (n) without any recursive or asymptotic parts, so extract the format
of your guess, and collect all other leftover terms.

• make the leftover terms non-positive or non-negative, depending on the bound you’re
aiming for. To do this, assign any value you need to the constants you’ve defined.

4

The master method deals only with recurrences of the form T (n) = aT (n
b
) + f(n). The

recursion tree is complete (symmetric). In that tree, every node branches out a times, so
the number of nodes in level j is aj. Also, every subproblem is a factor b smaller than its
predecessor, which means that there are logb n levels, and also means that the amount of
work done at any node in level j is f(n

bj
). Thus the amount of work in level j is aj · f(n

bj
).

At the leaf level, j = logb n, so the number of nodes is alogb n. This is equal to nlogb a.
The first thing to do when applying the master method is to asymptotically compare

nlogb a to f(n). In other words, when looking at the recursion tree, we are roughly comparing
the work done at the leaf level to the work done at the root. There are three useful outcomes.

Case 1. The leaf level dominates the root level, by a polynomial factor.
This means something stronger than simply saying nlogb a = Ω(f(n)). We are saying that
nlogb a = Ω(f(n) · nε), for some positive ε. The nε is the polynomial factor that makes nlogb a

“much” larger than f(n). If instead of nε we had a non-polynomial multiplicative factor (like
constant, or logarithmic), the condition would not be satisfied. We can rewrite the condition
as f(n) = O(n(logb a)−ε).
If case 1 is satisfied, then we have T (n) = Θ(nlogb a). Again, this means that the amount of
work at the leaf level dominates.

Case 2 is loosely interpreted as having about the same amount of work in all levels. If this
were true, we would have f(n) = Θ(nlogb a). Because there are Θ(log n) levels, the total work
becomes T (n) = Θ(f(n) log n) = Θ(nlogb a log n). That is the extent of the coverage of case
2 in the textbook.
However, case 2 actually allows the root-level work to be a little larger than the leaf-level
work. How much larger? Any multiplicative factor of logk n, for non-negative k. Formally,
we allow f(n) = Θ(nlogb a · logk n), where k ≥ 0. (The case k = 0 is the basic case 2 described
above).
Given the intuition that we have (somewhat) the same amount of work in all levels, so, as
in case 2, we still multiply the root’s work by a log factor and get T (n) = Θ(f(n) · log n), or
in other words, T (n) = Θ(nlogb a · logk+1 n).

Case 3 requires that the root dominates the leaf level by a polynomial factor.
Thus f(n) = Ω(nlogb a · nε) = Ω(n(logb a)+ε). This is the similar to case 1. However there is an
extra condition, requiring that the work per level decreases geometrically. To establish this,
we just need to compare the top two levels. That is, compare f(n) with af(n

b
), and show that

the latter is at most a constant fraction of the former. That means showing af(n
b
) ≤ qf(n),

for some 0 < q < 1. For every recurrence dealt with in this course, this will be true (and it’s
not really hard to prove).
The answer for case 3 is T (n) = Θ(f(n)). Again, this means that root-level work dominates.

5

Comparison-based Sorting (mainly heapsort)

Even though sorting is a fundamental concept in algorithms, this course mainly uses it to
introduce big-O, recurrences, and divide-and-conquer, with the exceptions of Heapsort and
Quicksort. This section focuses on Heapsort after a brief note about Mergesort: I think it’s
safe to say that mergesort doesn’t really need much of an explanation. One thing you might
have not thought about is whether it can be implemented in place. For our purposes this
means using only the space that holds the data, plus a constant extra amount. For mergesort
it turns out that it is really difficult to avoid copying data, unless you’re willing to sacrifice
time complexity. Specifically, it is difficult to merge two sorted arrays without using extra
space. (Linked lists are easier to handle).

Heapsort is another standard O(n log n)-time sorting algorithm. It has one advantage
over mergesort, in that it works entirely in place. Conceptually, a binary max heap (or just
a heap from now on) is a binary tree where every node must be no greater than its parent.
Assuming distinct elements for simplicity, the root stores the largest element, and any path
from the root down to any leaf has elements decreasing in value on the way down. The other
structural property of a standard binary heap is that it is balanced: if it has k+1 levels,
then either they are all full, or the top k levels are full and the bottom level is filled in from
left to right. Those two rules define a standard heap2. Notice that the subtree below any
node in a heap is also a heap. Also, by the second rule, a heap with n elements has O(log n)
levels. A heap is typically stored in an array; one index per node. We don’t actually need
pointers to form a tree, even though the heap is visualized as one. There is a correspondence
between node positions and array indices. That is given by indexing nodes, top-down level
by level, and left-to-right within any level. So the root has index 1 and the rightmost leaf in
the lowest level has index n. Then, given any node with index j, if it has a left child, that
will be found at index 2j. A right child would be at index 2j+1. The parent of j will be
at index b j

2
c. An easy way to remember this is to think of indices 1, 2, 3. So, it is just as

easy to move around (between adjacent nodes) in a heap within an array as it is to do so
conceptually when looking at the tree shape.

There are two primary ways of building heaps. One is incremental, meaning we add
the k-th element after building a heap on the first k−1 elements. The k-th element is
placed at the first available leaf position (rightmost in the lowest non-full row). In fact
this is automatically true if we are just looking at the k-th index in the array, after having
heapified the first k−1 indices. After bringing element k into the picture, we locally make
sure that the parent > child rule is maintained. So, having inserted the new element at the
bottom, it will move up on the unique path to the root, as long as it encounters elements
that are smaller. It is quite easy to see that this process restores the primary heap property.
The path to the root could be logarithmic in size, in the worst case. If that happens every
time, then this heap-building algorithm costs O(n log n) time overall. Convince yourself that
there is an input that will actually cost Θ(n log n) time to heapify. Again, remember that
what really happens is we perform comparisons in an array, and make swaps as necessary.

The second heap-building algorithm processes the input array starting from the end,
rather than from the beginning. Conceptually, we start with the correct tree structure, but

2There are other types of fancier heaps that achieve some pretty amazing results.

6

we have no idea what the values are. We begin at the rightmost leaf in the lowest level,
and move right-to-left, then up to the next level starting at its right end, etc. Every time
we move to a new node, we stop to make sure that the subtree rooted at that node is a
heap. The last stop is at the global root, so when we are done with that, by construction
we will have made a heap. The reason we move right-to-left, and in ascending level order,
is to make sure that don’t have to do a lot of work at every stop. Notice that all leaves
are already heaps (each of size 1). So we can actually start this process at the rightmost
non-leaf. In general, when we stop at a node, x, we can assume that its children are roots of
heaps. So what could prevent the tree rooted at x from being a heap? The only thing that
could violate the rules is x being smaller than at least one of its children. In this case we
just swap it with the largest child. This makes the new root equal to the largest element in
this subtree, so the new problem, if any, will again be rooted at x (one level down). So x will
trickle down while it is smaller than at least one of the two nodes directly below it. The cost
of making sure that the subtree rooted at x is a heap is O(height(x)), where height is the
number of levels measured from the leaf level going up up to x. Height is always O(log n),
so the cost of this method is O(n log n). However, some finer counting shows that the work
is in fact linear, in the worst case. The key is that height is very small for lots of nodes.
Recall that half of the nodes are leaves, and they have height 1 (or zero, depending on who’s
defining it). Every two leaves have one parent, with the possible exception of one single-child
leaf. So the number of leaf parents is half the number of leaves. Similarly, every time we
increment height by one, the number of nodes at that height is halved. So the amount of
work can be upper-bounded by

∑logn
H=1(H ·NH), where H is height and NH is the number of

nodes with height H, which means we have
∑logn
H=1H · n

2H
. The n can be factored out, and

the sum becomes a constant (see class notes). So overall this is O(n).
Once we’ve built a heap, we can use it to sort, easily. The largest element is at the root,

and thus at the first index of the input array. We swap it with the last element in the array,
so the largest element goes exactly where it belongs in sorted order. Thus we say that the
largest element has been “extracted”. Then we decrement a counter that marks the active
prefix of our array. In other words, we want to leave all extracted elements where they are,
and decrement the position of what is considered the “last element”. Notice that the formerly
last element, which we placed at the root, will be relatively small, given that we started with
a heap. So it will most likely violate our first heap property. Thus it will have to trickle
down, always making local comparisons and swaps, until the primary property is restored.
This costs logarithmic time in the worst case. We have n extractions to perform, so the
time will be O(n log n) overall. Actually, the true cost is the sum of depths of all nodes, i.e.,
counting the level of every node starting from the top. That is because the more we extract,
the less trickling down there will be. Think of what happens after we have extracted all but
few elements. The trickling down will only cost a constant. It’s tempting to think that we
will be able to use a summation trick like above, to reduce the time complexity. However,
counting the sum of depths is much different than the sum of heights. Intuitively, there are
many nodes with high depth, unlike height. In fact, no such trick will work, because heap
sort consists of two phases: building a heap and iterative extracting. The former takes linear
time as we demonstrated already. So the latter must take Ω(n log n) time, because anything
faster would imply that heapsort contradicts the known lower bound for the problem of
comparison-sorting. That lower bound is described next, after an intro to decision trees.

7

Decision trees and the lower bound for comparison sorting

Decision trees are algorithms.
In this section I will specifically describe binary decision trees, where decisions are defined
as comparing two elements and deciding which is larger. These trees represent algorithms
that are based on doing just that: comparing elements. Examples are: mergesort, quicksort,
heapsort, insertion sort, selection. All of these algorithms involve moving elements around,
but each time we move an element, we do so because of the outcome of a comparison. So the
number of comparisons involved in each of these algorithms is the key to understanding their
time complexity. Critically, none of these algorithms perform other arithmetic operations,
nor do they assume anything about the type or distribution of the data.

A (binary) decision tree can be shaped like any arbitrary binary tree. Each non-leaf node
represents a decision (i.e., a comparison of two elements), for which there are two possible
outcomes (hence the “binary”). When comparing b and c, we either have b ≤ c, or b > c.
(It doesn’t matter which side is a strict inequality, as long as we’re consistent). So the two
branches below any non-leaf node represent paths to two different possible realities that
differ in only one way: the outcome of the decision in that node right above. Each of the two
branches will lead to another node. That might be another non-leaf, meaning that another
decision is to be made. The new decision could be the same on both sides, but doesn’t
need to be. Algorithmically, the new decision might depend on the outcome above. This
continues all the way down, until we reach a leaf node, which represents output. Overall, a
decision tree is an algorithm, that compares elements iteratively (top-down), and produces
its output according to the outcomes of the decisions. The unique path from the root to any
leaf represents the execution of the algorithm for a particular input that is consistent with
the outcomes of all the decisions made along the way on that path. The path is essentially
discovering certain critical properties of the input, at least enough to be able to provide the
desired output, without a hint of doubt. The length of any path represents the execution
time, because it counts the number of comparisons used to get to the output. It is assumed
that other work involved in the algorithm is overshadowed by the number of comparisons,
as is the case for the algorithms listed in the first paragraph.

You can think of decision trees in terms of playing the game of 20 questions. Your friend
is thinking of some person, and you have 20 question to narrow down who it is. The questions
can only be answered by yes or no. Depending on the information you collect along the way,
you might change your strategy, but in theory you could precompute your entire strategy
for all possible combinations of answers that you might receive (good luck). That’s what a
decision tree is though. It encodes all possible sets of questions that you might ask, in the
order that you will ask them. In some cases you might figure out who your friend is thinking
of, using fewer than 20 questions. That would correspond to having a leaf at a relatively
close distance to the root. Depending on the questions you ask, it might take you much
longer to narrow down to one person. So a decision tree represents how good your algorithm
is. What we care about is the longest path from the root down to a leaf. That’s the worst
case scenario.

As an aside, in general, decision trees don’t need to be binary. If there are more than two
outcomes for an operation, then that can be represented with nodes that have more than
two children. For example, a decision could distinguish <, =, >. Also, the operations don’t

8

need to be restricted to comparisons. For example, there are algebraic decision trees, where
decisions are made based on the sign of the solution to a polynomial. For instance, for some
b, c, x, is bx+ c ≤ 0 or not? The higher the power of the polynomial, the more powerful the
decision tree.

Here is a simple trivial problem: Given an array of n integers, provide the first index that
stores the value 13, if one exists. The reasonable thing to do is scan through until we find a
13, or until we realize that there is no 13. Suppose that we have a binary decision tree that
can distinguish a=b vs a 6=b at each node. Then the primary shape of this tree would just
be one long path of non-leaf nodes. Each such node would have a leaf child (say, to its left)
corresponding to an output that announces the current depth (corresponding to the current
index scanned). The other child would be a new decision, this time comparing a new index
to 13. However the lowest non-leaf node would have a second leaf child, corresponding to
the output “not found”. For the classic binary decision tree model where the nodes decide
between ≤ and >, we would actually need two nodes to determine equality of two given
integers. For instance, to compare the element at index i to the value 13, we would ask if
that element is greater than 13, and if not, then we would ask if it is greater than 12. So the
first node involving the parameter i would branch off to either the secondary node, or to a
decision involving the next index, i+1. The secondary node would branch off to a positive
output (declaring that index i holds 13), but also to a node dealing with the next index as
well. In other words there are two paths corresponding to searching further (incrementing
i). So the shape of the tree would be different. However it would also have linear maximum
depth, which makes sense because this problem takes linear time to solve, whether you ask
one or two questions per index. Note that we could determine equality by asking if a ≤ b
and then if b ≤ a, even for non-integer input.

Sorting lower bound:
Decision trees aren’t just a different way of describing algorithms. They can provide powerful
results about the difficulty of certain problems. Recall the game of 20 questions. You lose
if you can’t identify who your friend is thinking of, using at most 20 questions. Now, you
might lose because you didn’t come up with a good strategy (algorithm), and happened to be
given a difficult person to discover. But in fact, no matter how good your strategy is, if your
friend may use a huge pool of candidates, then your strategy will not be able to guarantee a
correct answer in at most 20 questions every time. You can only guarantee to narrow down
the set of candidates by a factor of a half with every question, so with 20 questions there’s
only so much that you can do. This is the more interesting use of decision trees.

Suppose that we have n real numbers that we want to sort. For simplicity let’s assume
that the numbers are distinct. Let our numbers be a1, . . . , an. The output will be a re-
ordering of the numbers, so that they are in sorted order. In other words the output is
a permutation of the numbers. For every possible input (of which there are n!) there is
a distinct output permutation required to obtain a sorted set. A sorting algorithm must
be able to recognize which permutation is required. So the algorithm must gain enough
information, via comparisons, to be able to distinguish among all permutations. It might
have to do even more work, but all we care about right now is that there is a bare minimum
that must be done. For example, if we compare a1 with a2, and determine that a1 > a2,
then we know that any permutation that maps a2 to a position before a1 is not the correct

9

output. A sorting algorithm has to make enough comparisons among items in the input, to
be able to eliminate all but one output permutation. Clearly if we compare all pairs we will
have enough information to do this. But that just suggests that it should be easy to sort in
quadratic time. What we’re interested in here is a lower bound. How many comparisons are
required to get enough information to distinguish among all permutations? It is important
to note that we care about the worst case here. In the best case, we could just make n−1
comparisons, get lucky, and know the sorted order. For instance this would happen if we
were given the numbers in sorted order and just compared elements at adjacent indices. But
this strategy won’t determine the correct permutation for other inputs; it hasn’t done enough
work. The problem we are concerned with here is to figure out the number of comparisons
that any sorting algorithm will have to make, for some particular input that happens to
make that particular algorithm work the hardest. Every sorting algorithm has its nemesis
input. We’re not actually characterizing what that nemesis is, we’re finding out how much
work every algorithm will be forced to do if it faces its nemesis, whatever that may be.

So, suppose that we have a decision tree that compares < vs > for some pair of indices
at every internal node. The leaves represent output, and for the sorting problem we said
output is a permutation. Every permutation must be represented by at least one leaf. If
a permutation were missing, then how would our algorithm ever handle the input that
requires that permutation? So the conclusion is that any decision tree corresponding to a
comparison-based sorting algorithm must have at least n! leaves.

The next question is, how shallow can a tree be, if it has at least n! leaves? What we
want to measure here is the height of the tree, in other words the longest path from root to
leaf, because that corresponds to the worst case performance of the corresponding algorithm.
The best way to minimize height is to construct a balanced tree, and such a tree will have
logarithmic depth with respect to its size. If it is unbalanced, some path will have to be even
longer. So even if our decision tree is perfectly balanced, it must have height no less than
log(n!), by a a standard binary tree property. If this value is not an integer, then the height
must be dlog(n!)e.

To recap, every decision node (i.e., comparison) gives us a little bit of information, that
allows us to figure out what permutation we will need to apply the given input. In the best
case we can eliminate half of the permutations that we’re still considering. The problem is
that there are n! permutations that we start out with. Essentially, a perfect sorting algorithm
would be able to do binary search on the set of all permutations. In reality there is no sorting
algorithm that does this perfectly, but some come really close.

The value log(n!) is actually Ω(n log n). In fact it’s Θ(n log n) but we are only proving
a lower bound here. The classic way of showing this is to use Stirling’s approximation. In
my class notes (last page) I show another easy way as well. In any case, the interesting part
of this lesson is how we got to log(n!) in the first place. This is a more precise answer than
quoting Ω(n log n) as a lower bound for sorting, especially for small values of n. We only use
Ω(n log n) because it has a familiar form.

The conclusion is that every comparison-based sorting algorithm that could ever be in-
vented has no hope of sorting with fewer than log(n!) comparisons (and thus can’t beat a
time complexity of n log n), in the worst-case.

10

Counting Sort and Radix Sort

From the previous section, we know that there is a Ω(n log n) lower bound for the worst-
case time complexity of any comparison-based sorting algorithm. This does not apply to
Counting sort and Radix Sort, because they come with extra assumptions. Specifically,
counting sort assumes that the data consists of n integers within a range k (between smallest
and largest). All it does is use an array with one cell reserved for every possible input in
the range, whether it is in the input or not. By scanning through the data, we can easily
update how many times we’ve seen each value. Then by scanning through the counter array,
we can easily list all input values in sorted order. All together this takes O(n+k) time.
What this simple procedure does not do is preserve the order of duplicates. In other words,
this is not stable. This might matter if the order hides some secondary information (that
happens to be in sorted order). Also, stability is critical when sorting is used as part of other
algorithms, even other sorting algorithms such as Radix sort which follows. To get stable
counting sort, we can convert our original counter array to a new helper array which stores
the number of elements that are no greater than a particular value, for all possible values.
This is illustrated in detail in the class notes. In a nutshell, the helper counter tells us how
much space to leave in an array for each value, so that when we scan in the original input
array we can easily map elements to the output array.

Given the tool of stable counting sort, we can set up Radix sort, which works under
different assumptions. Here we assume that our n input numbers consist of ` digits. For
instance, 5230909 has 7 digits. We can assume that all input has the same length, or make a
conversion. The base, or radix, r is also a parameter. This is typically 2, 10, 16, for binary,
decimal, hex, etc, but it could be anything. Radix sort first considers the least significant
digit (i.e., the rightmost) in each of the n numbers. It uses stable counting sort to sort them,
and then moves on to the next significant digit, does stable counting sort on those n values,
etc. At iteration i, we will have sorted the suffixes (of length i) of all n numbers. So at the
last iteration we will have sorted all n numbers. The proof is easy, by induction. At every
iteration we deal with more important (significant) digits, which are the main criterion for
sorting. Ties are broken by what happened in previous iterations, and that’s why stability
matters. In each iteration we deal with n digits, each of which is in the range from 0 to
r, so counting sort takes Θ(n+r) time. Over all ` iterations, the total time complexity of
Radix sort is O(` · (n+r)). So the time complexity depends on the representation of the
input. Notice that the length ` and the radix r are related. The smaller the radix, the longer
the representation. Under certain conditions, the time complexity can beat other sorting
algorithms.

11

Indicator random variables

An indicator function can be used as part of a mathematical expression that involves different
scenarios. In some sense it is like an IF statement. For example, we could define the function
I(x) to be 1 if x is even and 0 if x is odd (assuming x is an integer). If we have some procedure
that handles odd and even numbers differently, we can express this all in one. For example:
f(n) = I(n) · n2 + (1− I(n)) · 5n.
This says that if n is even then we square it, but if it is odd then we multiply it by 5. Typically,
indicator functions only output 0 or 1. Here, we are concerned with such functions in the
context of randomized algorithms.

A random variable can be thought of as a function. As an example, a random variable
X could be the sum of the numbers we see when we roll 3 dice. When we actually roll 3
dice, we know what X is, but that’s not very interesting. It is more challenging to consider
what we expect X to be, before rolling the dice. This expected value is a weighted average,
and is written as follows: E[X] =

∑
y · P (y). Here, the sum is over all possible outcomes y

that X could have, each multiplied by the probability of it occuring. We have a summation
instead of an integral because we are dealing with a discrete set of possible outcomes for
X. If this expression is not clear to you, try out a few simple scenarios. What happens
if there is only one possible outcome? What if there are 2 or 3 but they all occur with
the same probability? Think of X as the amount of money you expect to get when you
play the lottery that involves guessing a number. If you guess correctly, you win 2 million
dollars, otherwise nothing. But the former happens once every one million times, and the
latter happens with probability almost 1 (actually 1 minus a millionth). So you expect to
get 2000000 · 1/1000000 + 0 · (1 − 1/1000000). Thus you expect to win 2 dollars. Sounds
good, except whoever designed this lottery would know this, and would thus make sure to
charge strictly more than 2 dollars for a ticket. On average the lottery company will win
and you will lose.

Notice that the lottery example is a case where we could use an indicator function. There
are only two possible scenarios, and precisely one of the two will occur (with a hugely differ-
ent associated function). In fact, for an indicator function (or indicator random variable),
X, that evaluates to either 1 or 0, we have E[X] =

∑
y · P (y) = 0 · P (y=0) + 1 · P (y=1).

Here, the possibly outcomes (y) are 0 and 1. So, by definition we have E[X] = P (y=1). In
other words, by definition, the expected value of an IRV is the probability that it evaluates
to 1.

Sometimes it’s quite difficult to evaluate the expected value of a random variable directly.
This will be true if there are many possible outcomes, and it’s difficult to group them to-
gether. Consider flipping a coin 10 times, and counting how many occurrences of HT we
find. For example, in HTTHHTHTHT, we have HT appearing 4 times. But on average how
many times will it appear? We could list all possible sequences of H and T of length 10, and
then count for each sequence. But there are 2k such lists, for length k. It doesn’t seem to
be much help to consider all the possible outcomes, even though there are less than 9. That
is, HT will either not appear at all, or once, or twice, etc, but it clearly can’t appear more
than 9 times. In fact it can’t appear more than 5 times. Still, figuring out the probability
of HT occurring exactly 0, 1, 2, 3, 4 or 5 times seems just as annoying as the brute force

12

exponential method we just mentioned. Here’s where indicator random variables help us.

When we have to find the expected value of some variable X, and this involves counting
individual events, each of which may or may not happen, and it’s not straightforward to do
it directly, one thing that should pop into mind is IRV. The goal will be to set up k new
indicator random variables such that X = X1 + X2 + . . . + Xk. Again this is why IRVs are
like IF statements. Here, every Xj should be 1 if the corresponding event should be counted.
Otherwise, it should be zero. We are interested in E[X], so by definition we want to know
E[X1 +X2 + . . .+Xk]. It is always legal to convert this to E[X1] +E[X2] + . . .+E[Xk]. In
other words, we have Ek

j=1[
∑
Xj] =

∑k
j=1E[Xj]. This is by linearity of expectation, which

you are allowed to take for granted in this course although it is technically straightforward
to prove. Even if the various IRVs are dependent, linearity of expectation holds. It is often
these dependencies that make a brute force calculation really difficult or time consuming in
the first place. So far, the only difficulty is to define those IRVs. The second difficulty is to
be able to quickly evaluate E[Xj], for any j. As long as you can do that, you can evaluate
the summation and you’re done.

For the example with flipping coins, we have an X that involves counting: How many
times will we see HT? If you were to count for a particular string, you would literally look
at every index to spot an H, and for every such H you would check the next index to spot a
T. So it makes sense to define Xj = 1 if we see an H at position j, and a T at position j+1.
Otherwise Xj = 0. Then, X = X1 + X2 + · · · + X9. So we have just accomplished the first
“difficult” task: setting up some IRVs that add up to X. Then we follow standard procedure
by taking the expected value and applying linearity of expectation, to get E[X] =

∑
E[Xj].

The second “difficult” task is to evaluate each E[Xj]. It turns out that for this problem, this
is easy. As explained previously, the expected value of any IRV is equal to the probability
that it evaluates to 1. So E[Xj] = P (Xj=1). That is the probability that we find an H
at index j and a T at index j+1. This probability is affected only by those two coin flips.
There are 4 outcomes for flipping two coins: HH, TT, TH, and HT. Only one of four makes
Xj=1. So E[Xj] = 1/4, for 0 ≤ j ≤ 9. Thus

∑
E[Xj] = 9/4.

Apart from this being a neat way of solving many interesting problems, the point of
understanding IRVs in this course is to be able to later follow the analysis of randomized
Selection, and Quicksort.

13

Selection (deterministic)

The selection problem involves a set of elements that can be ranked (i.e., sorted), and
finding a particular element that has rank r, without actually finding all ranks (which would
involve sorting). The classic example is to find the median of a set, i.e., r = dn/2e. Duplicates
can be handled as well, but we will just assume distinct values. The objective is to do this
in linear time, just by using comparisons. This is achieved by the classic algorithm by Blum,
Floyd, Pratt, Rivest, and Tarjan.

I won’t describe the entire algorithm in detail. In a nutshell, it is a recursive algorithm
that involves first “guessing” that a particular element x has the desired rank r. It is easy to
verify if x has rank r: simply compare it to all other elements in the set and count how many
are smaller. This takes linear time. This forms a partition of the set, and x is sometimes
called a pivot. If x has rank p, and p 6= r, then we have to keep trying. To do this, we can
place x at index p in the input array, and place all smaller elements at smaller indices, and
all larger elements at larger indices. Note that we have no idea, nor do we care, where the
other elements go 3, apart from having them partitioned with respect to x. Now, having just
partitioned, we only need to reconsider one side of x in the array, depending on whether r
is greater or less than p. For example, if r < p then the element that has rank r must have
a value smaller than x. This means that we have eliminated x and any element larger than
x from the candidate list. Thus we can recurse on the subarray to the left of x. If r > p we
recurse on the right. To make the actual recursive call, we may have to recalculate the rank
that we are looking for, because this rank is relative to the array we are recursing on. Specif-
ically, this happens only if r > p. See class notes for an illustration. What remains to be
shown is how to pick some x, without really guessing, with the goal of obtaining linear time
complexity. Note that if we consistently (recursively) make guesses that give us elements
with very high or very low ranks, we will get a quadratic-time algorithm. That is because
we will keep recursing on problem sizes that are barely reduced. On the other hand, if our
guess is always relatively near the middle of the subset we’re dealing with, we will get linear
time, via geometric series.

The paragraph above actually describes the randomized Selection algorithm, because it
involves guessing x. The difficult part of the randomized version is the analysis (if you want
to do it rigorously), for which you need to understand indicator random variables. The
deterministic algorithm has a beautiful method of picking an x that guarantees a low time
complexity overall. So far we know that after choosing an x, we will use it as a pivot, and
then recurse. The time complexity for finding the element with rank r among n elements is
T (n) = [choose an x without guessing] + T (new problem size if r 6=p) + Θ(n).
We need to pick x efficiently, and we need it to guarantee a relatively small problem size if
r 6= p. In other words, we need p to not be extreme. The current Θ(n) term involves using
x as a pivot to partition, and thus determine if r = p.

The solution is to find x recursively as well, after doing a linear amount of preparation
work. Specifically, as mentioned, we want x to be larger than “many” elements, and also

3Actually, sometimes we do care. There is such a thing as stable partitioning, where the initial order of
elements that end up in the same group is preserved. This is useful in the context of other algorithms, such
as Radix sort, and Quicksort. Stable partitioning is not difficult.

14

smaller than “many” elements. One way to do that is to pick x as the median, but that’s
essentially what we’re trying to do in the first place, so it’s not an option. So we could
instead try to have x be the median of a significantly smaller subset of our input, in other
words we could try to compute a sample median. Then at least our recursive call would be
on a smaller problem size. Suppose we arbitrarily pick n/5 elements and compute x as their
median. This would guarantee that x will have an overall rank of at least n/10 and at most
9n/10, in the original set. Our worst case recurrence would be:
T (n) ≤ T (n

5
)+T (9n

10
)+Θ(n), which unfortunately is superlinear (try it out). In other words,

after picking x in time T (n
5
), we might have r 6= p and thus have to recurse on a subarray

of size 9n
10

. Our goal of recursing on a “small” subarray is achieved, but it costs us too much
time to accomplish this. Changing the number 5 to something else won’t help either.

Instead of picking n/5 elements arbitrarily, we can pick n/5 particular ones that will
provide some information about the rest of the elements. That can be done by first forming
n/5 groups of 5, and within each group determining the median element, all by brute force.
The total time for this is Θ(n). Now we know that within each group there are 2 elements
larger than the group median, and 2 elements that are smaller. We will let our x be the
median of these n/5 group medians. What does this mean? We can make a copy of those
n/5 elements and just solve the problem recursively, in T (n

5
) time. This is just the same cost

as before, when we had picked those n/5 elements arbitrarily. What changes now is the size
of the recursive problem that we will have if x does not have our desired rank r. Specifically,
if the rank of x is too high, that means that half of the group medians also have a rank that
is too high, because they are all larger than x. We also know that for each of those group
medians that we are too high, there are 2 elements (from within their respective groups)
that have even higher values. So we have determined that there exist roughly n/10 group
medians that can’t have rank r, and another 2n/10 elements that also can’t have rank r. All
together, roughly 3n/10 elements are no longer candidates. So when we actually use x as a
guess and as a pivot, in the worst case we will recurse on 7n/10 elements. The case where
the rank of x is too low is symmetric. Here I am ignoring some small boundary conditions
that affect the number 7n/10 slightly (or equivalently, that affect the range of n for which
the claim holds). Our recurrence becomes
T (n) ≤ T (n

5
) + T (7n

10
) + Θ(n). As a recap, the first term comes from choosing x, the sec-

ond term exists only if p 6= r, and the last term is for partitioning but also doing all the
brute force work with the groups before we recursively find x. By simple substitution we get
T (n) = O(n). This means that our new, smarter, recursive choice of x reduced the worst
case size of the second recursive call (the one associated with the work that must be done if
r 6= p), enough to get T (n) down to linear.

15

Selection (randomized)

The randomized algorithm for selection is simpler than the deterministic one. See the
first two paragraphs of the preceding section. We don’t bother with the elaborate procedure
to choose a pivot. Instead we use a randomly chosen element from the current subset of
elements. If we know that the array of data is in random order, then choosing the element
at any index is fine. So we can always just pick whatever is at the smallest index. We can
always randomly permute the data once before running this algorithm, to make sure that
every pivot will have a random rank. Without the assumption of random order, we might
get sub-optimal behavior.

In any case, the simplification made by randomly picking a pivot comes with an added risk
that the algorithm might become very slow. For instance, if we consistently pick a pivot that
has an extreme rank (relative to the current subset), and the pivot never has the rank we’re
looking for, then we will consistently have to recurse on a subset with only the pivot removed.
This will lead to quadratic time overall. The recurrence would be T (n) = T (n−1) + Θ(n).
Here the Θ(n) represents the time it takes to choose the pivot (which is just a constant if
we pick the first index), plus the time to partition. So, technically, randomized selection has
worst-case quadratic time complexity. But we can prove that we expect it to have linear time
complexity, even with certain pessimistic assumptions. It turns out that you would have to
be really unlucky to get something slower than linear. Note that our analysis doesn’t provide
a probability of running in linear time. To do that, we could set a leading constant that we’re
happy with (say, 20n), and show what the probability is of randomized selection running
in less than that time. All we are saying with our analysis is that if we run randomized
selection on sets of n elements, over and over, on average it will run in linear time. In fact
we also get the leading constant that we expect to see on average.

The analysis begins with an important step: defining the time complexity of random-
ized selection. This time complexity depends on the rank that our random pivot will have.
Specifically, the pivot will have some rank k+1, meaning that k elements are smaller than
the pivot. We will always assume that the pivot does not have the rank we are looking for.
That is our first pessimistic assumption. In other words, even if this happens consistently, we
expect the algorithm to run in linear time. Given this assumption, when we choose our pivot,
we will partition the current subset that we are dealing with, and recurse. As a reminder,
this means comparing all remaining candidate elements to the pivot, and deciding which
side has the element with the rank we are looking for. So we will recurse on all remaining
elements that are smaller than the pivot, or on all elements that are greater. Now it’s time
to apply our second pessimistic assumption. Among those two groups, we will assume that
we always have to recurse on the larger group. Even with this assumption, we expect to
get linear time. Take a moment to realize that removing either of these two assumptions
will only improve the time complexity. So, with the first pessimistic assumption, the time
complexity is
T (n) = Θ(n) + [“either T (k) or T (n− (k+1)) depending on the rank”]
but with the second assumption we just have T (n) ≤ Θ(n) +max{T (k), T (n−k−1)}. How-
ever, we have no idea what the rank k+1 will be. It could be anything from 1 to n.

We can use indicator random variables to express the fact that there are multiple possible

16

values of k but only one will actually occur. We define Xk to be 1 if our pivot has rank k+1,
otherwise it is zero. In other words, we’re letting the subscript of our IRV be the same as the
parameter on the left in the max term of our recurrence. So for 0 ≤ k ≤ n−1, we know that
precisely one Xk will be equal to 1, and all others will be zero. Thus the time complexity is
T (n) ≤ Θ(n) +

∑n−1
k=0 [Xk ·max{T (k), T (n−k−1)}].

In that entire summation, only one term will be non-zero. So the expression is equivalent to
what we had before.

What we’ve been interested in all along is E[T (n)]. We now know that this is no more
than E[Θ(n) +

∑n−1
k=0 Xk ·max{T (k), T (n−k−1)}]. Note that I’ve removed the square brack-

ets that were previously used to show that the sum is over all terms that followed. Now the
square brackets are just for expectation. What we have here is the expectation of a bunch
of terms summed together. There are n terms in the summation itself, plus the Θ(n) term.
By linearity of expectation we know that this is equal to the sum of the expectations of each
individual term. So we have E[Θ(n)] +

∑n−1
k=0 E[Xk ·max{T (k), T (n−k−1)}]. The first term

has nothing random about it. Recall that it corresponds to partitioning. We can partition
in dn time regardless of what pivot is chosen, so E[Θ(n)] = Θ(n) = dn.

Let’s look at one term in the summation, for fixed k: E[Xk · max{T (k), T (n−k−1)}].
This is the expected value of the product of two random variables. The first is the indicator
random variable, Xk, which is determined by the random choice of pivot. The second is the
recursive call. The size of the recursive call depends on k, but once we assume that we’re go-
ing to recurse on this size, what happens recursively has nothing to do with why we recursed.
In other words, we have a brand new subproblem, on some subarray, and what happens in
that problem depends only on a brand new randomly chosen pivot. So the two random
variables in our expression are independent. For any two independent random variables Y,
Z, it is a fact that E[Y ·Z] = E[Y] ·E[Z]. You may take this for granted. So our expression
is equivalent to E[Xk] · E[max{T (k), T (n−k−1)}]. This happens for all terms in the sum-
mation that we had, so we now get E[T (n)] ≤ dn+

∑n−1
k=0 E[Xk] ·E[max{T (k), T (n−k−1)}].

For any IRV, we have E[Xk] = P (Xk = 1), and in our problem, for any k this is 1/n.
In other words, all ranks are equally likely for our randomly chosen pivot. This is why it
matters that we can assume that our data is randomly distributed. The result is that our
expression simplifies to: E[T (n)] ≤ dn+ 1

n

∑n−1
k=0 E[max{T (k), T (n−k−1)}].

Next, notice that for both k = 1 and k = n, we have a term E[max{T (n − 1), T (0)}].
This is just E[T (n− 1)]. For k = 2 and k = n−1 we have a similar equivalence. They both
contribute a term E[T (n− 2)]. This double-counting pattern continues in a nested fashion.
Note that if n is even then we have pure double-counting. If n is odd, then one term in
the middle has no “partner”. In that case we’ll double-count it anyway and get a slight
overestimate. So in either case, we can rewrite our expression:
E[T (n)] ≤ dn+ 2

n

∑n−1
k=bn

2
cE[T (k)].

Note that in the new range of the summation, T (k) ≥ T (n−k−1), so this is equivalent
to the max term that we just got rid of. We could have also simplified to this instead:

E[T (n)] ≤ dn+ 2
n

∑dn
2
e

k=1E[T (n−k−1)]. We’ll stick with the former.

17

We’re trying to prove that E[T (n)] = O(n), meaning E[T (n)] ≤ cn, for some constant
c. We will use the substitution method on the recurrence that we have just obtained. So,
we assume by induction that E[T (k)] ≤ ck, for all k < n. Then we can substitute into our
expression, to get E[T (n)] ≤ dn+ 2

n

∑n−1
k=bn

2
c ck = dn+ 2c

n

∑n−1
k=bn

2
c k.

We’re going for an upper bound here, so we’re free to exaggerate things. Note that∑n−1
k=bn

2
c k ≤

∑n−1
k=1 k, which is an expression we often encounter. However, if we make this

exaggeration, we won’t be able to conclude that E[T (n)] ≤ cn. Try it out. Instead, we
can use the fact that

∑n−1
k=bn

2
c k ≤ 3

8
n2. This is actually not hard to figure out analytically.

Roughly, when the sum is from 1 to n, we get approximately 1
2
n2. If we subtract the sum

from 1 to n/2, then we are subtracting roughly 1
2
(n
2
)2, which is 1

8
n2. It also helps to think of

the diagram that I provide in the class notes. Anyway, with this observation, we get rid of
the pesky summation and have E[T (n)] ≤ dn + 2c

n
· 3
8
n2 = dn + 3c

4
n. It is now easy to set c

large enough compared to d so that this is all less than cn. Specifically if c ≥ 4d, we’re all
set. Recall that dn corresponds to the time that we spend partitioning before we recurse,
when the problem size is n. So this is a small constant, and accordingly we get a fairly small
constant for the expected runtime of the entire algorithm. Note that this is true even though
we made some pessimistic assumptions. The expected average cost is even lower (although
still linear, because of the trivial lower bound).

What should you take away from all of this?
Well, for one, now you have some proof that you should expect randomized selection to
perform well on average, even though it can easily have a bad time complexity in the worst
case. In fact, not only does it perform well, on average it matches the best case and the
deterministic algorithm!
This is an example of how a randomized algorithm can compete against a deterministic one.
The code for randomized selection is definitely simpler, and in fact we expect it to run faster.
This is a nice relatively advanced example of how awesome IRVs are for formal proofs.
There’s a pretty good chance that you’ll be asked to explain something about medians in
job interviews, and being able to at least talk about the basics of this and the deterministic
algorithm can put you ahead of the competition.
Finally, take a moment to think about how relatively short and elegant both results on
selection are.

18

Quicksort (randomized analysis)

I’ll assume that you know what Quicksort does. In fact the algorithm is quite similar to
randomized selection. They both involve choosing a random pivot, and perform a partition
on that pivot. That means grouping all elements smaller (or respectively larger) than the
pivot. The two groups are placed in the array, to the left and right of the pivot, which resides
at the index that it would have had if the array were sorted.

In selection, after partitioning, we recurse on one side (or not at all if our choice of pivot
was lucky). In Quicksort we always recurse on both sides. In fact as the algorithm runs,
every single element will be chosen as a pivot, precisely once. The luck factor in Quicksort
has to do with the relative size of the two groups that are formed when we partition. If
they are anywhere near the same size (i.e., if one is a constant multiple of the other), then
the partition is essentially balanced, and we are “lucky”. Consistently obtaining balanced
partitions (even with this relaxed definition) leads to a time complexity of O(n log n). To
understand this, see the class notes where we get a skewed recursion tree, in which the work
at all levels is linear. In fact even if we get balanced partitions only some constant fraction
of the time, we still get the same asymptotic time complexity. An example of that is given
in the class notes where I give an informal definition of lucky and unlucky recursive calls.
Like with selection, the worst case time complexity of Quicksort is quadratic. In the worst
case, the pivot will cause an extremely unbalanced partition, and we will have to recurse on
a problem size that is reduced by just a constant. Whatever that constant is, we will get
quadratic time if this keeps happening.

The randomized analysis of Quicksort starts off similar to randomized selection. Once
again, the time complexity depends on the rank of the pivot, so all we can do is determine
the average time that the algorithm will take, over many sorting jobs of size n. We have a
non-recursive partition component in the algorithm, which takes Θ(n) time. After that we
recurse twice. For a pivot that has rank k+1, the two problem sizes are k and n−k−1. So,
either we have to recurse on T (0) and T (n−1), or we have to recurse on T (1) and T (n−2),
etc.

So we define n IRVs, exactly as for selection. Xk = 1 if our pivot partitions the current
array range such that the left subarray ends up with size k. The recurrence involving n
different possible scenarios can be written concisely as
T (n) = Θ(n)+

∑n−1
k=0 [Xk ·(T (k)+T (n−k−1))]. Of all these recursive terms in the summation,

only one will be non-zero.
The next few steps are part of the standard recipe for problems solved with IRV, but

in particular are rather similar to the randomized selection analysis. That is, we apply
linearity of expectation to get a summation of individual expected values, we observe that
the expected value of the non-recursive term is just Θ(n) (because it isn’t random), and for
each term we use independence to get the product of two expected values. For the last step,
as with selection, an IRV doesn’t affect what happens in the future within a recursive call,
so the two random events are independent. Finally, we observe that E[Xk] = 1/n, regardless
of what k is. As before, this is just saying that all ranks are equally likely when we pick a
pivot. So we conclude that E[T (n)] ≤ Θ(n)+ 1

n

∑n−1
k=0 E[T (k)+T (n−k−1)]. The summation

is 1
n

∑n−1
k=0 E[T (k)] + 1

n

∑n−1
k=0 E[T (n−k−1)], by linearity. These two terms are in fact equal,

19

so we have E[T (n)] ≤ Θ(n) + 2
n

∑n−1
k=0 E[T (k)] = dn+ 2

n

∑n−1
k=0 E[T (k)].

Notice how similar our expression is to what we had obtained for the selection problem:
dn + 2

n

∑n−1
k=bn

2
cE[T (k)]. The fact that the summation is now from 0 to n−1 makes a big

difference. With the substitution method we can show that E[T (n)] = O(n log n).

Technicalities: To get the substitution to work, unfortunately we resort to using an in-
equality “from the appendix”, which is that

∑n−1
k=2 k log k ≤ 1

2
n2 log n− 1

8
n2. Recall that we

used an analogous (more intuitive) inequality in the selection proof. To give just a little
bit of intuition here, observe that a clear exaggeration of

∑n−1
k=2 k log k is n2 log n, by making

every term use n instead of k. If the function were linear, a slightly less exaggerated sum
would be half of this amount: 1

2
n2 log n, as an average of the lowest and highest term. In

fact the function is convex, so the sum will be even less than the average of the extremes.
It turns out that it is significantly less, i.e., a fraction of n2. Details are omitted, but that’s
enough to give us enough flexibility to prove the upper bound of O(n log n). Also notice
that the appendix inequality is for a sum from k = 2 to n−1, not from k = 0 which is what
we had ended up with. So to use the inequality, we had to take care of the cases where
k = 0 and k = 1. The former corresponds to E[T (0)], but this is in fact zero. The latter
corresponds to another base case. We could also argue that E[T (1)] is zero, because we don’t
really need to do anything to Quicksort one element. But even if we adopt the convention
that it costs some constant amount of work, if we separate this term from the summation,
it gets swallowed up by the non-recursive Θ(n) term. Think of it this way: if we had to do
twice the non-recursive work for partitioning instead of dealing with E[T (1)], the final result
would have been the same.

As with the selection analysis, it’s easy to get frustrated with the details of the proof and
miss the big picture. What matters here is that you now know what is involved in showing
that Quicksort is expected to be efficient, even though in the worst case it can perform rather
poorly. In fact the efficiency of O(n log n) matches the best deterministic sorting algorithms
(excluding those that make additional assumptions about the data).
Once again, IRVs help to solve a problem that looks quite complicated, in an elegant and
(believe it or not) simple way. The set up of this proof is the real lesson: how we formulate
the recurrence, and how we use IRVs. After that it’s standard business, admittedly with a
trick or two mixed in.

20

Alternate analysis of Quicksort

This analysis gives the same result as the previous section, but is also a nice example
of another way that IRVs can be used. Instead of using IRVs to distinguish among several
possible scenarios, we’re going to use them to count the expected number of comparisons
involved in Quicksort. That’s good enough to analyze the expected time complexity, because
any constant-time operation that Quicksort does can be charged to a comparison that needs
to be made (and no comparison gets charged more than O(1) times).

First of all, notice that in Quicksort every pair of elements will be compared either once
or not at all. Specifically, all comparisons occur because some random pivot has been chosen.
That pivot is compared to everything in a specific range (in between previous pivots). Then
elements are partitioned into two groups and they never interact again. So we can set up
an IRV for every pair of elements, to be 1 if that pair gets compared (precisely once), or 0
if the pair never gets compared. In fact we will do this after relabeling the input. We let
the input be labeled as {z1, z2, z3, . . . , zn}, such that all the elements appear in sorted order.
Now, that’s what we’re trying to get as output, so remember that this is just a proof, not
an actual algorithmic reordering. We’re ready to define our IRVs as described above:

Xij = 1 if zi is ever compared to zj, otherwise Xij = 0.
Clearly the total number of comparisons, X, in Quicksort is equal to the sum of Xij over

all pairs, i.e., for all 1 ≤ i < j ≤ n. In the course notes this is a double summation. We
want to know what E[X] is, so we care about the expected value of the sum (over all pairs)
of Xij. By linearity of expectation, we want the sum (over all pairs) of E[Xij]. So all we
need to figure out now is what E[Xij] is, for any given i, j.

In other words, we need to know the probability that zi and zj will be compared. As
mentioned, in Quicksort every comparison involves a pivot and one other element, and in
fact that other element must not have been a pivot yet. Moreover, to be compared, both
elements must have fallen on the same side of every pivot that was considered beforehand,
otherwise they’d end up on different sides and would not be compared.

Let Zij represent a subsequence of our sorted list, from zi to zj (inclusive). While we
happen to pick pivots that are outside Zij, both zi and zj will land on the same side and will
still have a chance of being compared eventually. They will only be separated if we pick a
pivot that is in Zij but not zi or zj. So basically we don’t care how many pivots were chosen
outside this range, all want to know is what is the first element in Zij that became a pivot.
If it’s zi or zj, then they will be compared. If it’s anything else, they will not be compared.
Therefore the probability that zi and zj get compared is 2 divided by the size of Zij, i.e.,
2/(j − (i− 1)) = 2/(j − i+ 1).

Now the rest is just algebra. We know that E[Xij] = 2/(j − i + 1), so over all pairs
(1 ≤ i < j ≤ n) we have:

E[X] =
∑n−1
i=1

∑n
j=i+1E[Xij] =

∑n−1
i=1

∑n
j=i+1(

2
j−1+1

).

It is very easy to show that this is O(n log n). See the very end of the course notes. What
really matters is the setup.

21

Binary search trees (BST)

A binary search tree (BST) is a data structure that stores a set of elements, and supports
one main type of operation / query: searching for a particular given value. Secondary (but
rather common) operations are to add elements to the set, or delete them. As the name
suggests, the structure is a binary tree. The property that makes it a BST is that every
node has a value larger than that of all nodes in the subtree to its left, and smaller than all
nodes in the subtree to its right (assuming distinct values). This means that if you perform
an in-order walk on the tree, you get all the values in sorted order. This also means that
the primary operation, i.e., searching, is easy to do. Given a target value, x, we compare to
the root, and if not equal then we go to the left or right subtree depending on whether x is
smaller or larger than the root, respectively. Eventually either we find x or reach an empty
subtree, which means x is not in the BST. The cost of searching is equal to the length of the
path that descends from the root until x is found or we reach a leaf. So, in the worst case,
the cost of searching in a BST is equal to the height of the tree. Inserting an element is just
the same as searching for it, except at the end we create a new node.

Deleting an element depends on how we are accessing it. We might have a direct pointer
to the node, or we might have to search for the value in the BST, in order to access the
corresponding node. Once we have access to the node, if it has at most one child then we
can in delete it “instantly”. This is easy to see for a leaf, or for the root of a tree (in other
words for nodes of degree 1). If there is one child and a parent, we can still just link the
parent and child after deleting our node. On the other hand, if the node, x, that we want
to delete has two children, then the standard procedure is to replace x with its predecessor
or successor within the tree. The successor is the smallest value in the subtree to the right
of x (and this subtree exists in the case that we are now considering). This is found by first
visiting the right child of x and then following a path only visiting left children, recursively,
as long as possible. When we find a node without a left child, that is the successor of x.
Finding the predecessor of x is symmetric. It doesn’t matter which one we use to replace x.
Once we do replace x though, say with the successor, y, we might have to replace the former
position of y with another node, in order to keep a connected tree structure. Given that y
had no left child, an “instant delete” operation does the trick. In other words, either there
is nothing to do, or we just link the parent of y to the right child of y, effectively promoting
the entire subtree to the right of y up by one level. The cost of deleting is that of finding
the successor, so this is like a search (although technically we’re not looking for a specific
value), which costs the height of the tree in the worst case.

The bottom line is that the cost of searching, adding and deleting elements is proportional
to the height of the BST, in the worst case. This is why we are interested in keeping the
height as small as possible.

22

Worst, best, and expected cost of constructing a random BST

It is easy to see that a BST could have linear height. For example, sequential insertion
of 1, 2, 3, . . . , n will create one long path. The cost of inserting any element is equal to its
depth: Recall that to insert an element, we search for it and then add it as a leaf. This
means that when we look at a BST, we know exactly which elements were compared to each
other during its construction, assuming no deletions were made. For any particular node,
we know that it was compared to the entire path up to the root, and nothing else. So in the
example above, the k-th element costs Θ(k) to insert, because it is compared to all values
between 1 and k−1. Thus the cost of iteratively building a BST can be quadratic in the
worst case.

On the other hand, construction of every BST requires Ω(n log n) comparisons. The
“best” situation is a BST that is perfectly balanced. In this case, each of the leaves is at
depth log n, so the sum of their insertion costs is roughly n

2
log n. Why is the balanced tree

the least costly BST? Any other tree of the same size must have nodes at greater depths. We
can imagine plucking out nodes from the balanced tree to place them at deeper positions.
Thus their insertion costs increase. This is illustrated in the class notes.

There is another simple argument for why constructing a BST on n nodes costs Ω(n log n)
time in the worst case. As mentioned, an in-order walk provides the elements of a BST in
sorted order. So the entire process of building a BST and then performing an in-order walk
is a sorting algorithm. Specifically, it is based on comparisons. So the classic sorting lower
bound applies, and this entire process must make Ω(n log n) comparisons. Because the in-
order walk is cheap, it must be the construction of the BST that is the bottleneck. In other
words, a fast (say, O(n)-time) BST construction would imply that sorting could be done
faster as well, but we know that’s impossible.

The time bounds mentioned above are identical to those that we concluded for Quicksort:
quadratic in the worst case, Θ(n log n) if we’re lucky. For Quicksort, we’re lucky if we keep
getting balanced pivots / partitions. For a BST, we’re lucky if we end up with a balanced
tree. In fact it turns out that the similarity is no coincidence. To get a balanced tree, we’d
need a root that is the median of the elements (similar to a perfect Quicksort pivot). The
same holds for the root of every subtree, recursively. So there is a close relationship between
tree roots and pivots.

This remarkable similarity is illustrated in an example in the class notes. Take any ar-
ray with randomly distributed data, and iteratively build a BST by inserting elements with
increasing indices. Then take the same input array and run stable Quicksort. The term “sta-
ble” means that when we use an element x as a pivot, all terms greater than x are placed
after x in the array, in the same order as they appeared in the input. This is a standard way
of doing Quicksort, and is easy to implement. So, when we start constructing a BST from
the array, we pick the first element and place it at the root of the tree. Correspondingly,
for Quicksort, we use it as a pivot. In both cases, smaller values will end up “to the left”,
and larger values will end up “to the right”. In Quicksort, this happens immediately, as we
partition, and then we recurse on each side. For the BST, every element is compared to the
root, but then also to other elements further down, before inserting a new element. So the
exact order of operations is not the same, but what matters here is that eventually every

23

element will be compared to the pivot, or, respectively the root, and these two are the same
element. Also what matters is that this element partitions the rest of the data into two
groups that never interact with each other. Recursively, the same thing will happen again.
New pivots will correspond to new subtree roots. So, for instance, every element in the left
subtree of x will be compared to the root of that subtree, but correspondingly that root will
be the same as the new pivot in the subarray to the left of x in Quicksort. Following the
example in the class notes should make this clear.

The bottom line is that iterative BST construction and stable Quicksort perform exactly
the same comparisons, just in different order. Thus they have the same time complexity.
The expected number of comparisons in Quicksort is exactly the expected number of com-
parisons for constructing a BST on n elements. This means that if we are given a random
permutation as input, we expect to construct a BST on the input in Θ(n log n) time. If
you are given an array that might have some structured order that causes BST construction
to run slowly, you could randomly permute it first, and then construct a BST. This would
minimize any possibility of obtaining a slow performance.

Note that if the expected number of comparisons is Θ(n log n), then we expect a loga-
rithmic number of comparisons per node (on average). Think of the perfectly balanced tree
again. Half of the nodes are leaves, and they will have gone through log n comparisons.
So even if all the other nodes only needed one comparison (a clear underestimate), we still
get 1

2
log n as the average. It turns out that a logarithmic expected number of compar-

isons per node does not imply that a randomly constructed BST has O(log n) depth. One
could create a BST which looks perfectly balanced, except for one long path containing a
super-logarithmic but sub-linear number of nodes. For instance, let the chain have length√
n. Thus the bulk of the nodes would be in the nice balanced position with low depth,

and the size of the chain would not affect the average depth asymptotically. Yet the tree
depth would no longer be logarithmic, it would be Θ(

√
n). This is illustrated in the course

notes. The bottom line is that the equivalence to Quicksort gives us a quick result about
the time to build a randomized BST, but it doesn’t promise us much about the worst-case
time complexity of searching in that tree. However, there is a different analysis (beyond the
scope of this coruse) showing that the expected depth of a randomly built BST is in fact
O(log n). It requires IRVs and a few other fun tools as well.

Conclusion: Building a random BST has the time complexity of Quicksort. If we don’t
want to rely on randomness and expectation, we can still get deterministic logarithmic depth
for a BST, and thus deterministic logarithmic-time search / insert / delete, with a number
of carefully designed trees. One way to do this is to use a red-black tree (see next page).

24

Red-black trees

Red-black trees are just binary search trees with additional restrictions. These restrictions
are designed so that any valid red-black tree will have O(log n) depth. First, every node is
colored either red or black. To implement this, we just add a variable to every node, setting
it to 1 or 0. Second, the root is always black. Third, we add black leaves to the BST,
wherever possible. Thus all proper nodes are non-leaves. The important restrictions are:

• 4. We never allow two successive red nodes on a path from root to leaf. In other words,
every red node has a black parent.

• 5. The black-height property: For every node x in the BST, the following holds. If we
count the number of black nodes from x down to every leaf (separately), we obtain the
same number on every path.

The last restriction must apply to every node, but of course we treat each node indepen-
dently: we can’t possibly expect to get the same number for every node. However, when we
focus on any single node, we must get the same number on every descending path starting
at that node. The black-height of a node x does not count x itself, but it does count the
extra leaves that we placed in step 3. This is just convention.

Red-black trees have logarithmic height / depth:
When we look at any two paths descending from a particular node x, the longer path cannot
have more than twice the length of the shorter path. Why? Both paths must have the same
number of black nodes, by property 5. Let that number be k. To make the shorter path as
short as possible, we give it k black nodes and no red nodes. To make the longer path as
long as possible, we must place k black nodes, and insert as many red nodes as possible. By
property 4, we can’t insert two of them in a row, so we can place at most k+1, alternating
with the k black ones. In fact, given that the last node is a black leaf, we can only place
k red nodes (one above every black node). Hence the factor of 2. Now consider a perfectly
balanced tree, which we know has logarithmic depth. From this tree we could create any
other binary tree, by plucking out nodes and placing them at greater depths (in a nice way
that creates a connected tree). But by plucking out any node, the minimum depth drops
below log n. By the factor-2 argument above, the maximum height can’t go beyond 2 log n.

Another classic way to prove the logarithmic depth of a red-black tree starts by removing
every red node. To do this, for every such red node, y, we let the parent of y become the
parent of the children of y. This operation is called a contraction. The parent and children
of y are black (by rule 4). The new parent might thus obtain up to 4 children, if it initially
had two red children. In any case, by property 5, the black-height of the root tells us how
many black nodes are found on any path from the root down to any leaf. With all the red
nodes removed, we now know that all leaves are at the same level (depth). In other words,
the contracted tree is balanced (by depth, not by number of children for each node).

Next, consider that the contraction did not affect the number of leaves in the tree, because
they are black. Given n initial nodes, we have n+1 (fake) leaves. A height-balanced binary
tree on this many leaves has logarithmic height. The contracted tree that we just created
has the same number of leaves but is not binary. Every node has at least two children, but
might have three or four. This extra branching factor means that the height is at most that
of the perfectly balanced binary tree on the same number of nodes (or leaves). In other

25

words, for a tree with a fixed number of nodes, the more it branches out, the shallower it
must be. Thus our contracted tree also has at most logarithmic depth. Now re-insert all the
red nodes, and consider the longest path from root to leaf. By property 4, it can double in
length after re-inserting, but no more. Thus the depth of the initial tree is at most 2 log n.

So, by the properties that define a red-black tree, the tree must have O(log n) height. It
isn’t necessarily fully balanced, but it is reasonably balanced. What matters is that if we
have a red-black tree, we can search, insert and delete in logarithmic time.

Maintaining a dynamic red-black tree: The next thing to consider about red-black
trees is how to maintain all the restrictions after inserting or deleting, and in fact how to do
so in logarithmic time. If we can do that, then we have a data structure that supports any
sequence of searching, inserting, and deleting, in logarithmic time per operation.

There is a fairly simple algorithm to handle insertions, relying on a case analysis for a
constructive proof of correctness. See the class notes for an illustration. Briefly, when we
insert a node, it becomes a leaf, as with any BST insertion. Then we greedily try to color it
red, which means that it won’t affect the black-height count for any existing node. There is
a problem only if its parent is also red. When this happens, we perform some local recoloring
(according to a case analysis), and push the problem upward. For instance, we might create
two consecutive red nodes a bit higher up, but at least the node we just dealt with will no
longer be in violation of property 4. In fact, this is done in a way such that the black-height
property is not violated anywhere. Recursively, we recolor and push the problem up, until
we reach a particular case that resolves the problem, or until we reach the root. If we reach
the root, it is black, so property 4 can no longer be violated. Otherwise, the particular
resolving case that was just mentioned will involve not only some recoloring, but an actual
transformation to the structure of the tree, via an operation called a rotation. This is done
in a way that preserves black-height, and property 4 is no longer violated anywhere.

The rotation just mentioned exists in two symmetric forms: there are left-rotations and
right-rotations. To right-rotate a node x, the node must have a left child, y. Visualize
placing your right hand on x and the left hand on y, which is slightly below and to the left of
x. Imagine the line segment between your two hands and rotate it clockwise, while bringing
the child up to take the place of x. Thus x becomes the right child of y. Next, consider
what happens to the children (or in general, to the subtrees) of x and y. There were three
such subtrees: two belonging to y and one belonging to x (on its right). These are just cut
and pasted back in, at the unique positions that they can belong. In fact, only the right
subtree of y must change links. It now becomes the left subtree of x. All of this is much
easier to understand by looking at the simple illustration in the notes. A left-rotation on x
is symmetric. This time, x must have a right child, and we place the left hand on x, and
rotate counterclockwise. Again, if the left child of x is y, then performing a right rotation
on x followed by a left rotation on y will restore the original tree.

The conclusion is that when we insert into a red-black tree, we might have to perform
a logarithmic amount of recoloring, as we ascend towards the root, and finally one or two
rotations. Note that most of the work just involves flipping bits (recoloring), so in fact further
searching can be done while we are maintaining a red-black tree, because the structure is
only affected at the very end of the insertion. Deleting a node is a little trickier, but relies
on the same principles. This is handled in the book, but we won’t cover it in class.

26

Applications of dynamic BSTs

Dynamic balanced binary search trees are used frequently in computer science. The word
“dynamic” means that data can be inserted and deleted. The non-dynamic (static) case is
relatively uninteresting. In the dynamic context, it is implied that we will be performing
a series of actions: queries, insertions and deletions. The goal is to perform each of these
operations relatively quickly, compared to what we could achieve in the static case. It is
often assumed that we are allowed a certain amount of pre-processing time, to at least build
a basic data structure. This section outlines three applications.

Rank-finding and Selection. We know how to find the element with rank k in O(n)
time, for any k. That is the Selection problem. In fact we can solve this problem in O(log n)
time, as long as we are first allowed some pre-processing time to build a balanced BST. Now,
we know that building such a tree on n elements costs Ω(n log n) time. So the only point of
doing this is if we are going to perform many rank queries, and also if we might insert and
delete data in between.

Determining the rank of a given node in a BST can be done quite simply, by augmenting
the tree. That is just a fancy word for saying that we’ll store a little more information at
every node. For every node, we will store the size of the subtree that has its root at the
node. Then the rank of the root of the BST can be found by just visiting the left child of
and checking the tree size there. The root’s rank is just the size of that left subtree plus
one. If we’re looking for the rank of a non-root node, x, we perform a search for x but do
some counting along the way. If x is to the left of the root (because it’s smaller than the
root), we simply search in the left subtree. On the other hand, if x is larger than the root,
we go right but add one plus the size of the left subtree of the root to our count. We are
simply recording that the root and every node to its left are smaller than x, and thus must
contribute to the rank of x. That is the simple rule: when going left do nothing; when going
right, add a subtree size (plus one) to the current count. This involves a constant amount of
work per level, so it is logarithmic overall, as long as the tree is reasonably balanced. Note
that we could also calculate this sum by traveling up the tree from x towards the root. All
that matters is the path between the root and x. Subtrees to the left should be counted,
and subtrees to the right should be ignored.

The selection problem (finding the node that has a given rank k) is solved in a similar
way. We first compare the given k to the rank, r, of the root (by checking the left subtree
size). If they match, we’re done. Otherwise, if r > k, we search in the left subtree. Finally,
if r < k, we recurse in the right subtree, but we now look for rank k−r instead of k, because
we’ve just excluded r elements from the picture (the left subtree, and the root). So this
search takes logarithmic time if the tree is balanced, because we simply walk on a path from
the root down to the leaf level.

The previous arguments simply tell us that we can do rank queries and selection in
logarithmic time, if we are allowed preprocessing. To allow a dynamic data set, we have to
show how to maintain the subtree size at every node when inserting and deleting data (for
instance, in a red-black tree). We’ll just focus on inserting, because that’s all we covered in
class. When inserting a node into a RB-tree, as we search for its position, we increment the
subtree sizes of all its ancestors. Then to rebalance, we may do some recoloring and finally

27

a couple of rotations. The recoloring doesn’t affect subtree sizes. The rotations will. For
example, a right-rotation of a node x will affect the subtree size of x but also that of its left
child, y. The good news is that we have immediate access to the subtree sizes of the children
of x and y, and that’s all we need to reassign values to x and y. No other subtree sizes
are affected. The conclusion is that subtree sizes are easy to maintain when rebalancing a
RB-tree after insertion. Deletion also involves rotations, although we didn’t cover it so it
won’t be mentioned further.

Note that given the pre-processing time of Θ(n log n), using a BST for these problems is
worth it if we will have more than a logarithmic number of queries.

Range counting. The input to this problem is a set of numbers (elements), and two values,
L,R, representing the left and right ends of a range. For simplicity let’s assume that L and
R are not in the set, so elements are either strictly inside or outside of the range. We want to
know how many elements have values within the range. Clearly, without any preprocessing
this takes O(n) time, and in fact there is a matching lower bound because you can’t afford to
not look at all of the input. Preprocessing could simply involve sorting the set, after which
a range query takes O(log n) time: we binary search for L and R to find their ranks with
respect to the set, and subtract one from the other. So, if you are going to make many range
queries, it is worth it to pay for sorting once at the beginning.

The next thing to consider is performing range queries on a dynamic data set. Once
again, augmenting a BST with subtree sizes solves this problem. In fact, this is just dy-
namic rank-finding. In other words, we can just find the ranks of L and R, in logarithmic
time as mentioned above. Note that we don’t need to insert L and R in the tree, we just tra-
verse from root down to the positions that they would be in, each time counting subtree sizes.

Interval trees. The input to this problem is a set of (one-dimensional) intervals, each
consisting of a left and right endpoint. Then, given a query interval, Q, we want to know if
Q partially overlaps any of the intervals in the set. This is a yes or no answer, although a
positive answer is supplied by providing an overlapping interval.

It is easy to tell if an interval V overlaps Q. Let subscripts L and R denote left and
right endpoints of an interval. If VL < QL there will be overlap if and only if QL < VR. On
the other hand if QL < VL there will overlap if and only if VL < QR. All this takes O(1)
time. Obviously we could compare Q to the entire set and get our answer in linear time,
but by building a balanced BST as pre-processing, we can perform queries in logarithmic
time. Now, how do we build a BST on objects that are described by two values (endpoints)?
The point of a BST is to exploit some sorted ordering, so we can try to use left endpoints
as keys. In other words, as far as the BST is concerned, there is no structure whatsoever
regarding right endpoints. But at least every node is aware of what its right endpoint is.
This doesn’t count as augmenting, it’s just extra info that is already present in the input.
Let’s see what we can do with this tree. We can compare Q to the interval represented at
the root, in O(1) time. If we’re lucky, there will be an overlap and we’re done. Otherwise,
there are two cases: Q is either entirely to the left or entirely to the right of the interval at
the root. In the former case we’re almost as happy as if we had found an overlap. We now
know that the entire right subtree can’t possibly overlap Q. Why? Suppose that the root is
called V . For Q to be entirely to the left of V , we must have QR < VL. But all left endpoints

28

in the right subtree are greater than VL, thus there is no possible overlap there either. So we
ignore the right and recurse on the left subtree, without knowing if we will find an overlap
or not. We just got rid of a constant fraction of the problem in constant time, which is great
news. In other words, we moved one level down in the tree in constant time; which means
we’re well on track to get logarithmic time overall. But not so fast... what if Q is entirely
to the right of the root? Now we have gained no extra information at all: Q may or may
not overlap any given interval on either side. This approach has reached its limits. Except,
we can augment the tree to handle this case. At every node, we will store the value of the
maximum right endpoint found among all intervals represented within that subtree. Now,
if Q is entirely to the right of the root, we can compare QL to the maximum right endpoint,
M , stored at the left child of the root. If M > QL, there must be some interval in the left
subtree that overlaps Q. That is because all left endpoints of intervals in this subtree are
to the left of QL. So we recurse to the left, knowing that eventually we will find an overlap.
We don’t care if there might be an overlap in the right subtree, because we’re only looking
for one. On the other hand, if M < QL, there is no possible overlap within the left subtree,
so we recurse right. We don’t know if we’ll find an overlap there, but we’re happy enough to
have spent a constant amount of time to discard the left subtree and move one level down.
The conclusion is that in each case we know which direction deserves recursion, and there is
only one such direction. So in logarithmic time we will either find an interval that overlaps
Q, or report that no such interval exists.

Finally, we should mention how to maintain our augmented data (the maximum right
endpoint of each subtree), when inserting into a RB-tree. As with subtree sizes, it is pretty
easy. When searching for the (leaf) position of a new node, we update the maximum of any
node it is compared to on the way down. Then, when rebalancing, we only have to worry
when we perform a rotation. Consider right-rotating a node x, with left child y. When we
do this, x will inherit the right subtree of y, which will become the left subtree of x. So we
recalculate x by computing the max among its two subtrees. Similarly, we can recalculate
the max for y. Basically, maxima are easy to maintain when rotating.

It should be intuitive that problems such as rank finding, selection, range counting,
and interval overlap are fundamental for data analysis and retrieval. There are also high-
dimensional extensions, which you can learn more about in a followup course (ask me).

29

Dynamic Programming

Dynamic programming is an important and common algorithmic technique. It is used for
problems that have recursive formulations, where specific recursive calls (i.e., with specific
parameters) are made several times. In a nutshell, dynamic programming is just a method
of keeping track of the results of recursive calls, so that they don’t need to be solved more
than once (each). Doing this in a top-down manner is also called memoization. What this
means is that you proceed with regular recursion, but just before recursing with certain
parameters you check to see if you’ve already done the exact same thing, with exactly the
same parameters. How can you tell? You have a table where you store memos; one for every
possible combination of parameters you might recurse on. So if you do find a memo then
you return the stored answer and do not recurse. If you don’t find a memo then after the
recursive call is complete you store a memo with the answer, to be ready for the next time.
By avoiding repeated recursive calls, the savings can be huge.

In bottom-up dynamic programming all base cases are solved first, followed by subprob-
lems that rely only on the base cases, and so on. This is done iteratively, so recursion is
avoided, but this requires identifying an ordering among all possible subproblems, to iter-
ate through. As with memoization, solutions are stored in an array, so that solving larger
problems relies mainly on looking up solutions to smaller problems.

The top-down approach might get lucky in the sense that it’s possible that only part of
the table will be filled in. For some problems, this top-down approach could work faster on
certain input. In the worst case the behavior of both approaches is the same. The bottom-up
approach can save space in certain situations, and as mentioned avoids recursion.

The key to using dynamic programming is to get a recursive formulation for the solution,
and then to recognize that there is a limited number of distinct recursive calls that might be
made. This distinct number will often also be the size of the table that you will end up using.

Longest Common Subsequence (LCS). The input to this problem is two strings of
characters, of length n and m, respectively. The question is, what is the longest subsequence
that is common to both strings? A subsequence is not a consecutive substring; it is just a
set of characters read from left to right, with possible ignored characters in between. For
instance, let string X be ABCBDAB, and let string Y by BDCABA. So, n = 7 and m = 6.
By inspection we can find a subsequence of length 4 that is common to both, like BDAB. In
fact we can find three such answers, and no common subsequence of greater length exists.
So BDAB is a LCS. To visualize an LCS, write down the two strings horizontally, one above
the other, and draw straight segments between matching characters, without any of the
segments crossing. What you’re looking for is the largest number of such segments that can
be drawn.

Let’s assume that we can compare characters in constant time. This is quite reasonable
if the alphabet we are using has a constant number of characters. One way to find the LCS
is to enumerate all possible subsequences of X, and check to see if they are found in Y .
The checking part is easy. Given a candidate subsequence, we just scan through Y trying to
find the next matching character. But the number of subsequences in a string of length n is
exponential. Every index could be used, or not, so every binary number of length n maps to

30

a subsequence. This is a terrible algorithm.
We will temporarily relax the problem to ask only for the length of the LCS, not the

string itself. The solution can be found recursively. To do so, we will need to find the length
of the LCS among sets of prefixes of the input. So, let c(i, j) be the length of the LCS among
the strings X[1, . . . , i] and Y [1, . . . , j]. That is, among the prefix of size i in X, and the
prefix of size j in Y . What we are really looking for overall is c(n,m). It turns out that this
value can be found by looking at the last character in each string of the input, and making
a couple of recursive calls. Here’s why: Consider trying to compute c(i, j) in the case where
X[i] = Y [j], i.e., if the last characters match. We claim that c(i, j) = 1 + c(i−1, j−1), i.e.,
one recursive call is involved. To prove this, notice that either X[i] or Y [j] must be involved
in the LCS of X[1, . . . , i] and Y [1, . . . , j]. If both were not involved, we could just match
them up and improve the solution. But if one of the two characters has been matched,
and not with the other, that prevents the other from being matched at all (thing of the
visualization described in the first paragraph). Therefore you might as well match the two
respective last characters instead, and get a solution that is at least as good. Hence the +1
and the recursive call on the two prefixes.

So, what if the last two characters don’t match, i.e., X[i] 6= Y [j]? Then we will solve
two new subproblems, each obtained by ignoring one of the last characters. The solution
will be either c(i, j) = c(i, j−1), or c(i, j) = c(i−1, j), whichever is larger. In other words,
c(i, j) = max{c(i, j−1), c(i − 1, j)}. The reason for this is that in this situation we can’t
use both of the last characters to obtain an LCS, so one of the two must be ignored (again
think of the visualization; if both are are involved in a match then the corresponding edges
that we draw will cross). Thus we examine the only two possible options: hide X[i] or hide
Y [j]. Technically both could also recurse with both of them hidden, but this scenario will
actually be considered within each of the first two.

So, with the recursive solution above, we obtain a recursion tree that branches out once
or twice at each node, depending on whether two characters match or not. Clearly the worst
behavior happens when we don’t see a match, in which case we have to try out two possible
avenues. In each such case one parameter is decremented. So it is easy to see that certain
smaller recursive calls will be reached in many ways. See the example in the class notes,
where we begin with computing c(7, 6) and end up needing to compute c(5, 5) several times.
It is precisely this repetitive usage of the same recursive call that memoization and dynamic
programming are meant to deal with. As pure recursion goes, our very simple recursive
algorithm is still exponential.

As mentioned, memoization checks if a solution to a subproblem has already been com-
puted before proceeding with recursion. Such solutions are stored in a table (array), where
the size is the number of subproblems (i.e. solutions) that we might have to deal with. In the
case of the LCS problem, we can use an array of size n×m, because there are n prefixes in X
and m prefixes in Y . In the recursion tree, we get to ignore every subtree that corresponds
to a node that is a copy of one that has been visited before. For instance, the first time we
visit a node corresponding to solving c(5, 5), we check to see if we’ve solved this subproblem
before, realize that we haven’t, and continue normally. But the next time we need to solve
c(5, 5), we can realize that we’ve done this before, via table lookup. The values stored in the
table are simply the lengths of longest common subsequences. At index i, j, we store c(i, j).
We initialize with a negative value to signal that no length has been computed yet.

31

The time complexity of solving the LCS length problem via memoization is Θ(mn). That
is because there are just as many subproblems, but for each one all we have to do is look
at the table and then either return a value in constant time, or recurse, again in constant
time. I’m not saying that the entire remaining recursive procedure takes constant time, but
rather that the cost to make a new recursive call is just a constant. So, table lookup has
just brought the complexity down from exponential to quadratic!

Bottom-up dynamic programming bypasses recursion altogether. We use the same table,
but fill in entries in a different order. Top-down memoization will recurse normally until
some base case is solved, at which point a subproblem that relied on it will also be solved,
and the table will be filled in accordingly. Eventually some other base case will be solved,
and so on. With bottom-up dynamic programming, we start by solving all base cases. It
is conceivable that we won’t even need some of them, but we basically don’t care. We just
solve all of them, fill in the table, and move on to subproblems that are slightly more general.
For the LCS problem, we begin by implicitly noting that the length of the LCS of an empty
string with any other string is zero. We don’t really need to record this in our table, but
conceptually we can form a topmost row of n+1 zeros, and a leftmost column of m+1 zeros.
The intersection at the top left corresponds to comparing two empty strings. The first real
base case is that where both strings have length 1, i.e. it is c(1, 1). In this case, either
they match or they don’t, and the answer is 0 or 1. As explained earlier, recursively this
would have been computed by looking at the two characters and using a smaller subproblem.
In fact the entries in the array that we need, i.e., c(0, 0), c(1, 0) and c(0, 1) are all located
immediately above, to the left, and diagonally (above and left). This is true of any entry
that we need to compute. It will always rely on those three relative positions. So at this
point we can repeat filling in entries for which the corresponding immediate neighbors are
already filled in. According to our recursive formulation, for a particular entry at position
(i, j), if X[i] = Y [j] then we should look at the value above and to the left, and add 1.
Otherwise we should copy over the max among the entries above and left. Thus we just fill
the table in, row by row, or column by column, or via any other valid pattern that we like.
At the very end we will find the answer to the problem, at the bottom-right corner. The
time to fill in the table is Θ(nm), just as it was for memoization.

We can actually obtain the LCS itself, by tracing back in the table from the bottom-right
up to a base case. Tracing is done according to the recursive formulation. When we are at
an entry that corresponds to matching characters, we move diagonally, up and to the left.
This corresponds to using the particular (common) character in the LCS, and continuing to
write down more of it in a right-to-left manner. Whenever we are at an entry for which the
corresponding indices in the strings do not hold matching characters, we either move up or
to the left, depending on which of those entries holds a larger number. All we are doing
is following the recursive reasoning that defines the LCS substructure and dependence on
solving subproblems. So, any path formed in this way will literally spell out an LCS, read in
reverse order. We can actually get all possible longest common subsequences in this way! Of
course, there would be an additional cost for writing them all down. In Θ(nm) time though,
we find at least one, and we have all the information available to produce all of them.

Finally, here is a neat little trick for the bottom-up approach. We don’t actually need the
entire table, to get the length of the LCS. We can use Θ(min{n,m}) space, by overwriting
information that we no longer need. For instance, to compute the values in a row of our

32

table, we only need the row above it. So we can get the length using linear space, by using
two arrays of linear size; one representing odd rows in a table, and the other representing
even rows. This will still take quadratic time. Unfortunately this makes it impossible to
simply trace back to get the LCS itself. But it turns out that with some more care this can
also be computed in linear time. That is beyond the scope of this class.

Longest Increasing Subsequence (LIS). In this problem, we are given one sequence, S,
of n characters (or anything that can be ordered). For example, WTEHKRDGAKRGFD.
Within S, we want to find a subsequence that is in sorted (increasing) order, such that
there is no other increasing subsequence that is longer. Recall that a subsequence does not
necessarily consist of consecutive characters from S. In our example, EKR is an increasing
subsequence. So is AKR, but EGKR and DGKR are longer. I probably would have had a
more interesting example if I had bashed my keyboard differently.

As with the LCS problem, let’s first focus on finding the length of the LIS. We can solve
this problem by constructing an array A of size n, to store certain scores. A[j] will store
the length of the LIS that is restricted to ending at S[j]. In other words we mean the LIS
of the prefix of size j in S, with a forced usage of S[j]. We will fill the array incrementally
from left to right. To start, the first index gets a score of 1, trivially. That is our base case.
Inductively, assume that we have correctly filled our array up to index j−1. Now to compute
the value of A[j], we need a LIS that ends by using S[j]. That means that S[j] must be
larger than the previous character in this LIS, so we can scan through S[1, . . . , j−1], and
for each character S[i] that is smaller, we map to A[i] and see what subsequence length we
achieved up to that position. We should clearly add S[j] to the largest solution among all
those candidates. But what happens if S[j] is not larger than any of the characters to its left
in S? In that case, we set A[j] = 1, because the LIS that is forced to end with S[j] consists
of S[j] itself.

When all this is done, we scan through A and report the largest value. Basically, the LIS
of S must end at some index. We have found n constrained solutions, one of which is the
actual solution. The time complexity of this algorithm is O(n2). To compute A[j], we spend
O(j) time scanning to the left of S[j], and then O(j) time selecting a maximum value from
a subset to the left of A[j]. Obtaining the actual LIS is not difficult. Each A[j] “knows”
where it got its score from, and we just work backwards from the max in A[n].

As an aside, here is the first example of a reduction shown in this class. Instead of solving
LIS from scratch, we could make a sorted copy, C, of S. Then the LCS of C and S is what
we’re looking for. That is because any such LCS must be an increasing subsequence in S,
and any increasing subsequence in S is a candidate solution for the LCS. Transforming the
LIS problem to an LCS problem, and mapping back the solution, takes linear time. The
LCS problem can be solved in quadratic time, as we have seen.

33

Rod Cutting. The input here is a rod of length n, that can be cut at integer positions.
After the rod has been cut several times, each piece is sold. For every possible size, there is
a given price. The question is, where to make the cuts, to maximize profit.

This can be solved recursively as follows. Decide where the leftmost cut will be, sell the
piece to the left, and recurse on the rest. We have n options for the leftmost cut, including
the option of not cutting at all (equivalent to cutting at position n). Let P (k) represent the
profit for a rod of size k, and c(k) represent the profit of selling a piece of size k without
cutting it. Then we want P (n), which is the maximum of c(k)+P (n−k), for k = 1, . . . , n−1.
Note that we also need to consider k = n but in this case we only care about c(n) and we
don’t recurse.

It is not difficult to see that this recursive formulation will require subproblems to be
solved repeatedly. So we can use dynamic programming, by creating an array to hold all of
the scores for rods of size 1 to n. Each time we need the score for a larger rod size, we rely
on having computed the score for all smaller sizes, and we spend linear time finding the best
combination of the sum given above. So the entire algorithm takes quadratic time.

34

Hashing

As far as we are concerned here, hashing is a way to access data (and possibly insert
and delete data). The objective is to expect constant time operations, as much as possible.
Constant time access is already possible with an array, assuming we have a reliable and
quick way to map our data (keys) into the array. This would be possible if all our keys were
distinct, with values 1, . . . ,m, and we used an array of size m. We still use an array as the
primary structure in a hash table, but if we don’t have the conditions just mentioned, we are
no longer able to map, or hash, our keys into the table both reliably and quickly, in the worst
case. For instance if the keys have values not in the range of indices of the table, we need
some way to map them into that range. Also if we have duplicates, we need to deal with
them. The fundamental issue here is to construct a hash function that maps keys to slots in
the table. Note that multiple keys can map to the same slot. This is in fact unavoidable if
the number of keys, n, is larger than the table size, m.

There are many functions that map keys to slots. Most likely modular arithmetic will
be involved so that no key maps out of bounds. Besides that, there are heuristics involving
powers and prime numbers, designed to avoid certain pitfalls, but we won’t deal with that
here. Lots of analysis of hashing involves assuming that one has a function that behaves
randomly (perhaps a better words is “uniformly”), yet reliably. That means that a specific
key (value) will map deterministically to the same slot every time, but also that as we hash
many keys we will observe them landing uniformly in the table.

Chaining is a simple way to hash. We simply let our hash function map keys to the
table, and if two keys every map to the same slot, we start a chain, or linked list. Then,
besides the time to compute the function, insertion takes constant time, because we can just
insert directly or append to the list. Searching takes time proportional to the list size, in
the worst case. Note that in some applications we would want to search before inserting,
to avoid having duplicates. In any case, we want to keep the maximum or average list size
as small as possible. In other words, we want as uniform a distribution as possible, after
hashing n elements.

The load factor, α is simply the number of keys divided by the table size, so, α = n
m

.
If we assume that we have a good hash function that maps keys uniformly into the table,
then α is the average list size, so the load factor tells us how much time we expect to search
in a hash table. The more your function deviates from this assumption of simple uniform
hashing, the more α fails to capture the search time.

Open addressing is the second main simple way to hash. Here, we assume that the
table is at least as large as n, in other words 0 < α ≤ 1. No chaining is done, so every key
has to map to the table itself. But as before there is a possibility of two keys colliding at
the same slot. In other words, a particular key being hashed might find that another key is
already occupying the spot that it wants. In this case we essentially re-hash the current key.
What this means is that our hash function must describe an entire sequence of hashes, in
case we keep getting collisions. Ideally the hash function will produce a permutation of the

35

indices of the array, which will guarantee that eventually we’ll find an empty slot for any key.
There are many such functions. Linear probing operates by using a primary hash function
(as with chaining), and then trying consecutive slots until a free slot is found. Instead of
consecutive slots, we could also make jumps of fixed size, but then we should make sure that
the jump size is not such that slots are revisited. Of course, all of this is taken mod m.

Quadratic probing starts with a primary function and then hops around the table in
quadratically increasing jumps. The point of this is to make the sequence (or permutation)
of visited slots appear to be random, and to avoid clustering which occurs in linear probing.
Clusters are simply large consecutive occupied slots. They start ruining the performance of
open addressing.

With open addressing, given a probing sequence, inserting a key involves going through
the sequence of slots until an empty one is found. Searching is the same. Once an empty
slot is found, we report that the key is not in the table (because we would have put the key
there if we had needed to insert it). However, deleting keys is problematic. To delete a key
x, we need to find it, which means we hash to find its primary slot. Of course, we might find
another key there, so we continue searching, assuming that the insertion of x went through
a series of collisions and hashes. But if one of those keys that x collided with during its
insertion has subsequently been deleted, then searching for x again will fail. That is because
we will find an empty slot and assume that x isn’t in the table.

To analyze open addressing, we make the assumption that we have a hash function that
generates “random” probing sequences (consistently though). In other words, each key gets
a deterministic probing sequence, but the function is such that any permutation is equally
possible. This assumption is simply not true for linear probing or quadratic probing, because
they generate a rather limited number of probe sequences. In any case, under this assump-
tion of uniform hashing, it can be shown that expected search time is inversely related to
α, so if we have have a table size m that is a constant multiplicative factor larger than the
amount of data, n, we will expect a constant amount of time to search. It is not sufficient
to have a table size that is just a little larger than n.

Note: In this class, you should never use hashing as part of an answer to a problem,
unless that problem is specifically about hashing. In other words, don’t make any of the
assumptions that hashing uses, unless you are told that you can make those assumptions.

36

Amortization

Amortization is just a better way of analyzing the cost of a collection of operations,
compared to figuring out the worst case cost of one operation and assuming that this might
happen every time. It works when expensive operations are relatively infrequent. The
analysis is sometimes non-trivial, but the technique is frequently used.

In class we cover the array-doubling example. As a reminder, this involves inserting
elements into a set stored in an array. Every time the array fills up, we copy everything over
to a new array of twice the size. This will happen at one particular insertion, so it is true
that the worst-case cost of an insertion is linear. But it is clear that this doesn’t happen
every time. By careful counting, we can show that the cost of n insertions is linear, i.e., the
average cost per element is constant. In other words, the amortized cost of an insertion is
constant.

In problems where amortization is possible, there are cheap operations and expensive
operations. The goal is to get some intuition about the frequency of expensive operations
and/or figure out a pattern that must exist in a sequence of operations. The accounting
method, or banker’s method, involves estimating an average (amortized) cost and assuming
that this will occur for every single operation. Then whenever we get a cheaper operation we
know that we have overestimated the cost. We carefully calculate this overestimate and how
many times it occurs, so that we can use the excess to pay for expensive operations in the
future. It is not permitted to let expensive operations happen and then “promise” to pay
for them later via cheap operations. As long as we always have an overestimate of what has
already happened, we’re ok. In the array-doubling example, we “guess” an amortized cost of
3. Had we guessed some other larger constant, or log n or some larger function, the analysis
would have still worked. In fact we would have started to notice that we are overestimating
a bit too much, so eventually we’d probably be able to bring the amortized cost down to the
right constant.

The potential method involves coming up with a function of the structure holding your
data, such that the function will decrease a lot whenever you have an expensive operation,
and not increase a lot whenever you have a cheap operation. The idea is that changes in
this function will balance the individual operation costs. The potential, Φi, for the structure
at operation i, can depend on any number of things: the size of the set, the way things are
arranged, the structure of your tree, graph, stack, or whatever you’re using, etc. You can use
any anything quantifiable that has to do with your data, but it has to be something static.
Your potential function measures something in a snapshot of the data structure; it is illegal
to use something that has (quantifiably) changed between two iterations, i.e., between two
states of the data structure. For any of this to make sense, we need to be more clear about
what a potential function is and what it’s effect is on amortizing. First of all, we define the
amortized cost of the i-th operation, ĉi, as ĉi = ci+∆Φi = ci+Φi−Φi−1. In other words, by
definition, the amortized cost is equal to the actual cost plus the difference in the potential
function between consecutive states of the structure. If we have a function that is zero when
we have no data (i.e. at iteration zero, Φ0 = 0), and the function is always non-negative,
then we can take advantage of a telescoping series to claim that the sum of all amortized
costs is an overestimate of real costs. This is shown in the class notes. Essentially, the Φ
values all cancel out once we sum over all operations (i.e. over i), except for Φn and Φ0,

37

although the latter one is zero itself. So, by definition, the sum of all amortized costs is
equal to the sum of all real costs plus the function evaluated only at the very end, and this is
non-negative. Therefore the amortized cost is an overestimate. You don’t need to re-prove
this every time you use the potential method. It’s a proof that holds for any function that
is zero at the beginning, and otherwise always non-negative. This condition for Φn and Φ0

is really useful but amortization can still work if it doesn’t hold, in certain situations. The
course notes do mention this. Note that the change in potential, i.e., ∆Φ, can be negative.
It better be sometimes, for any hope of getting a result.

Once you’ve got a potential function, what remains is to evaluate the amortized cost,
by the definition ĉi = ci + ∆Φi, for all different types of operations that exist. Some of the
operations will have cheap real costs, and some will be expensive, relative to the amortized
cost that we would like to obtain. But there could also be various levels of cheap or expensive
operations. For each distinct type, we calculate an amortized cost. As mentioned, if you have
a potential function that decreases a lot whenever you have an expensive operation, that will
make the amortized cost of this operation cheaper. But you have to define your function
in a way that accomplishes this without making the cheap operations too expensive (via
large increase in potential). In the array-doubling example, an expensive operation occurs
when we double the size of the array, which is why it makes sense to have the potential be
a function of the array size.

Finally, once you have an amortized cost for each type of operation, you assume that the
worst type occurs every time, and thus overestimate the sum of amortized costs. That in
turn is an overestimate of the sum of true costs, so now you hopefully have a better bound
for this.

To most people, the potential method looks more complicated. There is this mysterious
potential function, but ultimately you’re probably doing no less work than figuring out what
a good guess should be for the accounting method. The potential method is frequently used
in advanced results in algorithms and data structures.

The array-doubling problem is a good example to use as an intro to amortization, but it
doesn’t reveal the true power of amortizing. That is because this problem is very predictable.
We know exactly when the array will double. Give me an iteration number, and I can tell
you if it will correspond to an expensive or cheap operation. Instead, amortizing is more
interesting when we have way less information about when the expensive operations will
occur. In such cases, we need to figure out patterns or frequencies for certain operations.
For instance, we can come up with arguments to show that expensive operations can only
occur if several cheap have preceded (not necessarily all in a row). As an example, in the
simulation of a queue by two stacks, we don’t know when things will be popped or pushed,
but we can still get an amortized cost, for any possible sequence of such operations. The
same is true for the problem with coins that I always hand out.

38

BFS and DFS

I don’t think there is much that needs to be said for basic searching in graphs. These
are things that everyone should have seen before 160 anyway. A few things worth mentioning:

BFS and DFS are used in at least two contexts: searching for a particular target vertex,
or simply exploring a graph.

BFS finds all shortest paths, in terms of number of edges, from the root (or source)
vertex.

Both BFS and DFS are often used as tools for solving other problems on graphs. For
instance, finding cycles.

Both BFS and DFS take O(V + E) time, because we reach every vertex and consider
every edge. For connected graphs, because E ≥ V − 1, we can abbreviate this as O(E).
However, when using BFS or DFS as a tool when solving some other problem, we might get
a faster time (e.g., O(V)) if we don’t need to carry out the entire search.

Searching on a directed or disconnected graph simply involves restarting when an indi-
vidual search is over, if there are remaining unmarked vertices.

The time complexity of BFS and DFS depends on the structure used to store the graph.
It is best to use an adjacency list, at least if we are not using the search as a subroutine for
another problem. BFS is implemented with a queue, and DFS uses a stack.

39

Topological Sort, and Strongly Connected Components

Topological sorting is a procedure performed on directed acyclic graphs (DAG). It involves
listing all vertices of the graph, so that if the graph has an edge from x to y, or if there
is a directed path from x to y, then y appears to the right of x in the list. If there is no
such path, then x and y can be placed arbitrarily. We can think of topological sorting as
squishing a DAG so that all its vertices are on a horizontal line, and all edges are directed
to the right. There are potentially many valid topological sorted orders for a given DAG.

To topologically sort a DAG, we just run DFS and list vertices in reverse order of finishing
times. A vertex is considered to have finished when it has no unmarked neighbors through
which to continue the DFS. So, when there is nothing that the vertex can reach, it can be
added to the list, and all future vertices can safely go to its left. To prove that this is valid,
it is sufficient to look at any DFS tree and consider how it was created (see course notes).

A strongly connected component (SCC) in a directed graph is a subset of vertices,
such that every vertex in the subset can reach every other vertex in the subset, via directed
edges in the graph. In fact the subset should be maximal, meaning that if you can place two
vertices in the same component, you do so. We can create a graph G′ from G, by represent-
ing every SCC of G as a vertex of G′. A vertex in G′ will have an edge to another vertex
if there was a corresponding path in G between the respective components. Then, no two
vertices in G′ can mutually reach each other, otherwise we would have merged their SCCs.
This means that G′ is a DAG.

How to identify strongly connected components:
The algorithm is simple. Run any DFS on G and record finishing times. Then create the
transpose GT of G, which has the same vertex set but all edge directions reversed. Finally
perform a DFS on GT , by processing vertices in the order of finishing times given by the
first DFS on G (process larger finishing times first). Whenever we perform a DFS from some
unmarked vertex, all vertices that it finds will belong to its component. After marking all
such vertices, we continue with a DFS from the next unmarked vertex in our list.

To prove that this algorithm works we first establish certain properties about the finish-
ing times generated by the DFS on G. Let A and B be two arbitrary SCCs of G. Of course,
A and B are not known in advance. There are two cases to consider. The first is when there
is no path from A leading into B and vice versa. Then whichever component is discovered
first by the DFS will also finish first, before the other component is discovered at all. For
example, if the DFS discovers A before B (either by starting in A or wandering into it from
outside), then the DFS will search all of A, possibly exit to discover other parts of the graph
and backtrack to A, but it will have no path to B. Thus all vertices of A will finish, before
the DFS backtracks out of A or resumes elsewhere to eventually discover B. The conclusion
so far is that in this case (where A doesn’t have a path to B, and vice versa), whatever
DFS we run on G, there will exist some “time” that splits all finishing times of vertices in
component A from all finishing times of vertices in B. We don’t care which comes first, all
we care about is that there is a clear split.

Next consider the only other possible case, without loss of generality: component A has
a path into B (but not vice versa, by definition of strongly connected components). In

40

this case, if a DFS begins in B or discovers it first, all of its vertices will finish before A is
discovered, by similar reasoning to the first case. On the other hand if a DFS discovers A
first, then there will be at least one vertex of A that will finish after B. Why? Because we
know there is a path from A to B, so some vertex in A has an edge leading directly outside
A and continuing along some path to B. That vertex can’t finish before the path to B is
followed, all of B is explored, and the search backtracks along the path. But not all vertices
of A will necessarily finish after B. For example, suppose that vertex v of A has a path to B,
but no other vertex in A does (without going through v). If a DFS begins at v and happens
to explore A before following the path to B, then at least one vertex in A will finish before B
is discovered. The conclusion about this case (A has a path to B but not vice versa) is that
either all vertices in A will finish after all vertices of B, or the finishing times of A will nest
the finishing times of B but not vice versa. (Once we discover B, we explore it all before
returning to A).

Putting both cases together, we conclude that regardless of how we run a DFS on G, the
list of finishing times will place the vertices of any two strongly connected components into
two or three “blocks” (ignoring vertices of other components). Specifically we will get two
blocks in arbitrary order if the components are unordered, whereas if component A has a
path to component B then we know the order of the two blocks (A to the left of B), or we
get two blocks of A with one block of B in between.

Now let’s look at how edges of G might be directed, between these blocks. Given our
definition of A and B, we know that there are no paths from B leading to A. So what about
edges (and paths) from A leading to B? We have already established that if there is such a
path then there must be such a path originating at a vertex of A that is in a block to the
left of B (i.e., with higher finishing times). We’re happy with such paths. What we want to
show is that there can’t be a directed edge from the right block of A (if it exists) pointing
into B. In other words, if there is any edge at all pointing to the left in our list
representation of G, it must go within a strongly connected component. We can
prove this by contradiction: If some vertex v belonging to A is in the right block of A, then
it finished before B. If v also has an edge pointing to the left into B, then v could not have
finished before using that edge in a DFS, which means B must have finished before v.

Finally, we can establish that the DFS in GT recognizes components. Whenever we start
a new DFS at the leftmost unmarked vertex, u, we claim that u will find all vertices of its
component U and nothing else. We know that u has a path to all of U , by definition. We
can assume that none of it will be marked, by induction. In other words no vertex to the left
of u mislabeled an element of U . Now, how might u mislabel an unmarked vertex, x, to its
right in the list? The DFS from u would have to follow a path along GT , eventually using an
edge from some element u′ of U to x. Could that edge point to the right? No, because that
would imply that there was an edge from x to u′ in G pointing to the left, but we established
that this is impossible. So, what if u leads to some u′ that is to the right of x? Then there is
an edge from x to u′ in G. But u is to the left of x, thus x is nested between two elements of
U . We have already established that if a block can’t have edges towards another block that
nests it; contradiction. This last statement can be explained in more direct way as well: if
x has an edge to u′ in G then x finished after u′. But accessing u′ implies thatu must have
been accessed already or will finish before backtracking to x, and thus u would necessarily
finish before x, contradicting the hypothesis that u is to the left of x.

41

Minimum Spanning Trees (intro)

Given a connected undirected graph G with edge weights, a minimum spanning tree
(MST) is a subgraph of G that has three properties:
1) it is a tree.
2) it spans all vertices of G, meaning all the vertices are in the MST.
3) it minimizes the sum of edge weights. This means that no other spanning tree can have
a smaller sum.

There are a few observations that help to understand the structure of a MST. For instance,
if a graph has a vertex of degree 1, then the single edge incident to that vertex must be in
the MST. If a graph has a vertex v of degree 2, then the lighter of the two edges incident to v
(i.e., the one with smaller weight) must be in the MST. This can be proved by contradiction.
Suppose that the two edges are e1 and e2, with the former having a smaller weight. If e1 were
not included in the MST, then v would be a leaf in the MST. So the purpose of e2 would
be solely to connect v to the rest of the vertices, via its other endpoint. But e1 could also
provide that function (via a different vertex of course). So we could remove e2 and add e1,
and still have a spanning tree. But its weight would be smaller than what we started with,
contradicting the claim that we had a MST. Note that this doesn’t prove that e2 shouldn’t
be in the MST; it only proves that e1 must be in it.

The degree-2 example given above is a special case of a more general and powerful result
about MSTs. What we were doing, essentially, was to isolate v from all other vertices,
and find the best way to connect v to them. In general, we can play the same game by
partitioning the vertex set, V , of G into two subsets. Suppose one subset is labeled A, and
the remaining subset, V−A, is labeled B. There are three types of edges in G. Those that
connect vertices within A, or within B, and finally those edges that connect a vertex from
A to one in B. The claim is the following.
The lightest edge connecting A to B must be in the MST. Observe that this was
true in the degree-2 case above, where A was just v. To see why the general claim is true,
we need the concept of a cut. Visually, this is just an arbitrary loop that separates A from
B. It can be visualized or drawn in many ways, but is easy to do, for any graph. No matter
how we draw a cut, it will cross over every edge connecting A to B. There is always a way to
redraw G so that the cut crosses only such edges. In fact, formally a cut is just a partition of
the vertices into two subsets. The cut implicitly identifies all the edges between the subsets.

Now, for the sake of contradiction, suppose that we construct a MST without using the
lightest edge as defined above. Let that lightest edge connect u in A to v in B. The edge
uv is in G but not in the MST. Draw any cut, and follow the unique path in the MST
from u towards v, until an edge is found that is intersected by the cut. Why must such an
edge exist? The (connected) path starts in A and ends in B, so the two endpoints must be
separated by the cut (loop). This separation must involve the cut crossing over one of the
edges on the path. To make this more constructive, start traversing the path from u to v.
At some point, you will have to find a vertex y in B. Let x be the preceding vertex on this
walk; by definition x belongs to A. So, by definition, edge xy is in the MST, and it must also
be crossed by the cut. Now remove xy from the proposed MST, and add uv. We said that
uv is the lightest edge crossing the cut, so this swap will make the sum of weights decrease.

42

This contradicts the assumption that we had an MST to begin with. Therefore uv must be
in the MST. Note that if xy and uv have the same weight, then this lemma just implies that
one of the two must be in the MST.

Another nice property is that any subtree of an MST, spanning some subset A of vertices
in G, must be the minimum spanning tree on A (using edges in G of course). Simply, if there
was a better way to span A, we could just use that as part of the MST instead. The rest of
the MST would not need to change, because connectivity through A would be maintained.
Note that this applies to a subtree of the MST, not an arbitrary (possibly disconnected)
subset.

Based on the above observations, we can come up with at least a couple of algorithms to
construct a MST. For instance, we could look at each vertex, consider it as a trivial subset
A, and conclude that the lightest edge incident to the vertex must be in the MST. After
doing this, we would have some number of connected components. Each time we could pick
some component and treat it as a subset, A. So each time we would just need to find the
edges that connect A to the rest of the graph, and pick the lightest edge. This could be done
in parallel, or by growing one component. Another algorithm could be to always add the
lightest unused edge, as long as it didn’t create a cycle. Not creating a cycle would imply
merging two components, and that would be justified by an appropriate cut. Both of these
ideas will be explored in the next two sections.

43

Kruskal’s MST algorithm

Kruskal’s algorithm is quite simple to describe and prove correct. Properly analyzing the
time complexity is just a little trickier. The algorithm considers every edge for inclusion in
the MST, in order of edge weights. So we start by sorting all edges according to weight.
Let’s assume that weights are distinct, to keep the description simpler. The algorithm and
analysis are not really affected by this.

At all times, we maintain a forest of subtrees of the MST. This is initialized as a forest
of all trivial subtrees (i.e., vertices) in the graph. Clearly every vertex will be in the MST.
As the algorithm progresses, subtrees will merge, until only one tree remains.

Starting from the initial configuration of just the vertices, we begin considering edges, in
the order mentioned above. For every edge e, we decide if it should be added to the MST.
Edges that are added are never removed. The rule to decide is simple. If the endpoints
of e belong to two different subtrees in the forest, or in other words if they belong to two
components in the graph that we are growing, then e belongs in the MST. Otherwise, the
two endpoints belong to the same component (or subtree), and we reject e. That’s the
algorithm. The proof of correctness is easy. If e links two vertices in the same component,
then it completes a cycle, but it is also the heaviest edge on that cycle. The MST has no
cycles, so one of the edges on that cycle has to be removed, and that should be the heaviest
edge, which is e. (This can be proved easily, for instance using cuts). On the other hand, if
e links two components, we can use our cut result, described in the previous section: Form
a cut around one of the two components, separating it from all other components. We know
that the lightest edge crossing the cut must be in the MST. That is precisely the edge e that
we are currently considering. All other edges crossing the cut have not been considered yet,
because they are heavier than e. Had there been a lighter edge crossing the cut, it would
have joined two components in a previous iteration, thus contradicting the assumption that
our cut surrounds one component. Also, any edge that has previously been rejected (because
its two endpoints belonged to one component) can be drawn either within the cut loop or
outside it. Or, in other words, we can draw the cut so that rejected edges do not cross it.
So we don’t have to worry about any lighter edge than e crossing the cut. Please note that
cuts are abstract objects. Coordinates and drawings do not matter.

To recap, first the algorithm sorts all edges, which costs O(E logE) time. Then for every
edge we have to decide if the two endpoints belong to the same component, and if they
don’t, we have to merge two components. One way to accomplish this is to give an extra
label to every vertex, to tell us what component it belongs to. To start out, every vertex
would have a different label, and progressively we would start forming duplicates. With
such labels, testing the endpoints of an edge is trivially done in constant time. Merging
components is also trivial, but what about the cost? If we don’t analyze carefully, we will
come to an incorrect conclusion, as follows. Changing the label of several vertices every time
two components merge results in a cost of O(V) per merge. Since this is done O(E) times
(once per edge), the total time complexity would become O(V E). However, the first thing
to notice is that even with E rounds, we actually only actually merge only V−1 times. This
means that the cost is O(V 2). In fact, a closer analysis will reduce this even further.

44

The “Union-Find” data structure is essentially a collection of linked lists, each one rep-
resenting one component. The name of the structure signifies that we will be merging (or
forming the union) of components, but also that we can find out what component any el-
ement belongs to, quickly. We give every element a pointer to one representative element
in the linked list, and that representative is responsible for carrying a label that makes the
component unique. Thus whenever we look at one of the elements, we find out its label by
following a link to the representative. It’s important to note that this is an auxiliary data
structure, and that we still want to use a primary structure (such as an adjacency list) to
store the graph. The two structures are linked, so that when we move around from vertex
to vertex in the primary structure, we can instantly locate where we are in the auxiliary
structure. Now, given two vertices in the primary structure, we can instantly get to their
“copies” in the Union-Find structure, and from there we can instantly tell if they belong to
the same component, by looking at the corresponding representatives. The big question is,
how do we merge two components? Well, each component is a linked list, so we can just
append one to the other. The only problem is, we need one label for this component, and
currently we have two representative labels. So one must be relabeled to the other. That
means reassigning pointers for possibly many vertices. Note that we can’t work around this
by just letting one representative point to the other. That would eventually mean that to
determine the component of some vertex we would have to follow a path of representatives.
So, one particular merge can cost O(V): for instance, if we merge two components, each of
size V/2. Heuristically, it makes sense to always relabel the smaller of two lists that must
be merged. In fact it turns out that this is critical in getting a better time complexity. The
reasoning is simple: now every vertex can only be relabeled O(log V) times. That is because
every time a vertex v is relabeled, it means it belonged to a list that was at most half the
size of the newly merged list. This new list would be at most half the size of some other
list, if v is going to be relabeled again. So the size of the component that v belongs to will
at least double every time v is relabeled, thus this can only happen O(log V) times before
we get one component of size V . So we should maintain the size of each list, so that we can
select the smaller one each time.Overall we get O(V log V) time for V unions, even though
one union can cost O(V). (this is an amoritzation result)

All together, it costs O(1) to check the endpoints of any edge, and thus O(E) for all such
checks. All of the work required to maintain the data structure that permits that constant
time lookup amounts to O(V log V). The bottleneck of this algorithm is in fact sorting the
edges in the very first step. In other words, O(E logE) is at least expensive as O(V log V),
because E ≥ V − 1 for the graph that we are assuming is connected. Finally, we can rewrite
O(E logE) as O(E log V 2) = O(E log V), which is the standard way of describing the time
complexity of this algorithm.

Notes: the time complexity of Kruskal’s algorithm is much smaller if we have pre-sorted
edge weights (for whatever reason). In that case, we just need to scan through the list, and
then merge components, all in O(E + V log V) time. Also, there is a fancier data structure
that gives a better time complexity, but that is beyond the scope of this class. Details are
easily found in CLRS.

45

Prim’s MST algorithm

Prim’s algorithm grows a single spanning tree, unlike Kruskal’s that grows several sub-
trees in parallel. We start with a trivial tree consisting of just one vertex. Again, we can
rely on the concept of a cut to greedily add the next edge. Given a current tree, we form
a cut around it. The lightest edge crossing the cut is the next one to join the tree. Once
an edge (meaning also a new vertex) is added, it is never removed. Clearly we should never
add an edge that links two vertices already in the tree. This is actually something we won’t
need to worry about, because at every iteration we will make sure to be adding a new vertex
to the tree.

In general, we will have three types of edges; those in the current spanning tree, those
joining a vertex in the tree to a vertex outside, and those not touching the tree at all. Clearly,
to correctly add a new edge to the tree, we need to be looking at the second type of edge.
In fact it is precisely these edges that cross the cut around the current tree. The next edge
to add should be the lightest of all such edges, that join a vertex in the tree to one outside.
Instead of maintaining a sorted order of such edges, or at least the lightest edge in this group,
the algorithm maintains a set of vertices that are not in the tree. The lightest edge is found
by actually finding a “cheapest” vertex. This means that we want to assign a score to every
vertex, such that the vertex with the lowest score is the one that should be added to the
tree. The score of every vertex will just be the weight of the lightest edge that we could
use to add the vertex directly to the tree. This means that vertices belonging only to edges
that don’t touch the tree will have a score of infinity. Vertices in the tree already are not
considered. It is only those vertices that are one “hop” away from the tree that can have
finite scores and thus be real candidates.

To start things out, we give every vertex a score of infinity, except for the arbitrary vertex
that is used as a seed (or root) to grow the tree. As soon as we choose that vertex, we give
all of its neighbors a finite score, based on the edge linking them to the root. Now that we
have vertices with finite scores, we pick the cheapest one to add to the tree. Notice that in
the very first step, this means that we pick the lightest edge crossing a cut that surrounds
the root vertex. Thinking about cuts can quickly provide a proof, or at least intuition, for
lots of these algorithms and their variants.

In general, we will have a current tree, and the vertex (outside the tree) with the lowest
score will have some edge with that weight linking it to the tree. That edge will be the
lightest crossing a cut, so the vertex and the edge can be safely added. So in general the
algorithm and proof of correctness are at the same basic level as Kruskal’s algorithm. Once
again the interesting part is to establish a time complexity. What we’ve said we need to do
is find a vertex with minimum score. We can do this by maintaining all vertex scores in a
min-heap. This will be an auxiliary data structure, that we can directly link to whatever
primary data structure we are using to store the graph. This means that given a vertex
in the primary structure, we can directly access its copy in the auxiliary structure. So, to
determine what vertex we should add to the tree, we simply look at the root of the heap.
To determine what edge to add, we simply look at all edges incident to the vertex (and not
in the tree already), and add the lightest one, that will have a weight equal to the score of
the vertex. Note that we find all such edges in the primary structure (such as an adjacency
list), and we can directly access the vertex in that structure starting from the heap, because

46

we have pointers between the two structures. The primary cost of adding a vertex v is
thus O(1) for accessing the top of the heap, Θ(degree(v)) for looking at all neighbors of v
assuming an adjacency list for a primary structure, and O(log V) for rebuilding the heap
once we extract v. Over all vertices, these primary costs will add up to O(V), Θ(E), and
O(V log V) correspondingly. Notice that the sum of all degrees is Θ(E), because we are
simply double-counting every edge. However, we are not quite done with v yet. Once we
add v to the growing tree, some vertices will have their scores reduced. For instance, if any
vertices previously not adjacent to the tree become adjacent (i.e., because they are neighbors
of v), then their scores will become finite. But it is also possible that a vertex with a finite
score will need to have it reduced because of the new incorporation of v into the tree. In
other words, a vertex might already be adjacent to the tree (one hop away), but now it has
a better alternative to be joined to the tree, via v). All of these vertex score updates can be
done by looking at the neighborhood of v. We simply look at each of its neighbors, and for
those outside of the tree we compare the current score with the weight of the edge linking
to v. That costs O(1) per neighbor of v, so Θ(degree(v)), and over all vertices it is Θ(E).
But we are still not done! Every time we decrease a score, we need to reflect this in our
min-heap. This means performing a decrease-key operation on a node in the heap, which
means the node might bubble up to the top, with a cost of O(log V). Every vertex might
have its score decreased once per neighbor, so the total number of decrease-keys is O(E).
Thus in the worst case this algorithm runs in O(E log V) time.

The previous analysis assumed the use of an adjacency list as a primary data structure
to store the graph. This is intuitive. After all, for every vertex we had at least two reasons
to ask for all of its neighbors, and we know that for such a query it is better to use an adja-
cency list than a matrix. However, for dense graphs, we know that we can actually afford to
use a matrix. It turns out that in such cases we can improve the time complexity without
even using an auxiliary structure like a min-heap. First of all, recall that a dense graph has
Θ(V 2) edges, so the previous implementation would cost O(V 2 log V). By just using the pri-
mary structure, accessing all neighbors of v would cost Θ(V) (for a matrix) or Θ(degree(v))
(for an adjacency list). Thus for all vertices the corresponding costs would be Θ(V 2) or
Θ(E) = O(V 2). Retrieving the vertex of minimum score would take a whopping Θ(V) time
instead of O(1), but this isn’t a bottleneck; over all vertices this would cost O(V 2). So, quite
simply, the total cost is O(V 2), which beats the min-heap implementation. Of course, for
slightly less dense graphs we would still want to use only the primary structure, and at some
level of edge density there is a tradeoff.

Finally, just as with Kruskal’s algorithm, Prim’s algorithm can benefit from the use of a
fancier data structure instead of a regular binary heap, but this is beyond the scope of this
course. Details are easily found in CLRS, or in the course that follows this one.

47

Single Source Shortest Paths: intro

The SSSP problem has the following input: a directed weighted graph and a source
vertex, s. The goal is to output all “shortest” paths from s to every other vertex. By
“shortest” we mean “minimum sum of weights”. BFS produces all shortest paths, when all
weights are equal to 1.

For a particular target vertex, t, the best path from s to t is not affected by other paths
from s to other vertices, although paths can have common parts. So essentially we are solving
V − 1 problems in parallel. Last time I checked, nobody knows how to produce the shortest
path from s to a given vertex t in time faster than what it takes to produce all shortest
paths from s. The SSSP problem is still well defined on undirected graphs, but we usually
just work with directed ones. After all, an undirected graph can be converted to a directed
graph by doubling edges. Note that between two vertices there can be multiple paths that
are optimal. All we care about is finding one such path.

For efficiency, we express the output in the form of a shortest paths tree, of size Θ(V),
rather than as a list of paths that could have total space complexity O(V 2). So each vertex
will need to have a pointer to a parent vertex. A big assumption here is that no shortest
path contains a cycle. It is clear that if all weights are positive then using a cycle is wasteful.
But with negative weights, cycles can potentially be useful to reduce the cost of a path.
Such cycles, with a negative total score, are called negative cycles. Some applications and/or
algorithms assume no negative edges, or no negative cycles, and others make no assumptions
(and can in fact detect negative cycles).

It is not difficult to see that any particular shortest path P , from s to some vertex t, must
have optimal substructure. In other words, if there is a vertex v on P , then P must contain
a shortest path from s to v, and the shortest path from v to t. Otherwise we would be able
to improve P . This means that if we want to compute the shortest path to some vertex t,
we could compute the shortest path to every neighbor of t (incident to an edge directed into
t), then add the corresponding extra edge (weight) to each such solution, and pick the best
option. This works really well when there is a particular order in the graph, for instance
when it is a DAG. On a DAG, we can compute scores of vertices in any topological sorted
order. Then when we compute the score of t, we just need the scores of ancestral neighbors,
and the actual computation for t won’t affect those scores again. In other words, we “sweep”
through the vertices in order and never have to look back. In general graphs though, it is
conceivable that updating the score of one vertex will affect the score of another but then
this could go back and forth. At the very least, it is more difficult to figure out in what order
to process vertices.

Relaxing – The process of updating the score of a vertex y by checking the usage of one
of its incoming edges, xy, is part of the main algorithms for SSSP. When doing this, we say
that we “relax edge xy”. All this means is that we compare the current score of y to the sum
of the weight of xy plus the score of x. It might be that the current best path from s to y
doesn’t use x, and we want to see if going through x is better. Or, it could be that the best
path already goes through x, but we are checking to see if we have recently found a better
way from s to x (in other words we are checking if the score of x has decreased since the last
time y was updated). Relaxing an edge clearly takes O(1) time (add, compare, update).

48

SSSP: The Bellman-Ford algorithm

This algorithm is very simple, but relies on an interesting lemma involving relaxing edges,
that will be presented first.

Relaxing Lemma: Let P be a shortest path between the source s and some vertex t.
Suppose that P has k edges, e1, . . . , ek. If we relax e1 before e2, before e3, . . ., before ek,
then we will have computed the shortest path score for every vertex on P .

The proof is by induction. If we have relaxed in the correct order up to some edge
ej = xy, then by the inductive hypothesis we have the score for vertex y. When we relax
edge ej+1 = yz, we get the score for vertex z, because we already know the optimal score
from s to y, and yz is part of the optimal path P which means it is the optimal way to get
from y to z (recall the optimal substructure claim). Thus we add the two to get the score of
z. The base case is trivial.

In other words, when we relax the first edge on P , we get the optimal score to the first
vertex (not counting s). Then when we relax the second edge, we get the optimal score to
the second vertex, and so on. We rely on the fact that every edge xy on P is locally optimal,
meaning that it gives the best way to get from x to y (otherwise P wouldn’t be optimal).
We also rely on the fact that any optimal path consists of optimal subpaths.

The Relaxing Lemma may seem a bit strange, in the sense that it relies on an optimal
path P , when this is what we are trying to find in the first place. All it says though is that
if P exists and we happen to relax its edges in a particular order, then the all the scores of
vertices on P will be known. In fact we will also get all the parent links that will form part
of a SSSP tree. Note that the lemma requires relaxing edges in the order of P but it says
nothing about relaxing other edges of the graph in between, or even relaxing the edges of P
itself multiple times in the wrong order. The Lemma still holds, as long as the edges of P
are relaxed as an ordered subsequence in any sequence of relaxations.

Now we can describe the Bellman-Ford algorithm. First it sets the score of s to zero,
and all other scores to infinity. It consists of V −1 iterations, and in each iteration it relaxes
all edges in the input graph, in arbitrary order. That’s all. The time complexity is O(V E),
because each round takes O(E) time, given that relaxing an edge takes O(1) time.

Why does this work? For every vertex vi, there is a shortest path Pi from s to vi, and
the following will be true. In iteration j, the j-th edge on Pi will be relaxed.

In other words, in the first iteration of the algorithm, the first edge on every shortest
path will be relaxed. In the second iteration, the second edge on every shortest path will
be relaxed, and so on. This is guaranteed because we relax all edges of the graph in each
iteration. So we guarantee the conditions required by the Relaxing Lemma. The reason we
only need V −1 iterations is that no path can have a longer length, if there are no (negative)
cycles. Without negative cycles, after V −1 iterations, all scores must have stabilized. If they
haven’t, then we know there is a negative cycle somewhere. Nothing in the proof prohibits
the existence of negative edges though.

49

SSSP: Dijkstra’s algorithm

Dijkstra’s algorithm only works with non-negative edge weights. This algorithm is re-
markably similar to Prim’s MST algorithm. It builds a SSSP tree from s, starting with the
trivial tree consisting of s itself. As with Prim, if the graph is in an adjacency list, we use a
min-heap as an auxiliary structure to store all vertices not in the tree. We initialize by plac-
ing all vertices in the heap, then set the score of s to zero, and every other score to infinity.
Again as with Prim, we alternate between extracting the min-score vertex x from the heap,
figuring out which edge gave x its score, adding both to the tree, and updating scores of
neighbors of x. That last step means relaxing all outgoing edges from x (although we only
care about the ones leading to vertices not in the tree). Of course, the first extraction is just
s so there are no edges to add.

The proof of correctness relies on a cut (as with Prim). If we cut around the current
SSSP tree, we can partition all (directed) edges of the graph as follows. Some are in the
tree, within the cut. Some don’t touch the tree at all, and they are outside the cut. Their
endpoints still have infinite scores. Finally there are edges that cross the cut. Among these,
we only care about the edges that cross from the tree towards the exterior of the cut. On such
edges, the endpoints (vertices) on the outside must have finite scores, because the endpoints
inside have already relaxed all their outgoing edges, given that they are in the tree. Note
that edges crossing the cut from outside to inside can be ignored because they can never be
part of a SSSP: they lead to vertices that already have a shortest path from s that is final.

Given the above observations, the next vertex x to be extracted from the min-heap is
found just across the cut, adjacent to the current tree. The extracted vertex x has the
shortest path from s, among all vertices not in the tree yet. We can safely add x to the tree,
along with the edge that we relaxed to give x its score, because no better path to x will ever
be found. Any other path from s will have to cross the cut somewhere else (through some
other vertex q), and then continue from q to x. But we have just said that crossing the cut
to x is better than crossing the cut to q, in the sense that the path from s to x is cheaper
than the path from s to q. Thus choosing to reach from s to x via q can only be worse than
our current option. All of this assumes no negative edges exist, otherwise all bets are off.

Notice that the only real difference from Prim’s algorithm is that here the choice of vertex
depends on the entire path from the source to vertices just beyond the cut. In Prim’s, the
choice depends on the lightest edge crossing the cut. In some sense, Dijkstra is like Prim
but considering history. Fortunately this history is stored at the vertices on the border of
the cut. The time complexity of this algorithm is identical to Prim’s, if we use a min-heap.
We get O(E log V) with an adjacency list and a heap. Or, O(V 2) with an adjacency matrix.

Once again, with a fancier heap, these time complexities can be improved. See CLRS or
the followup course.

50

NP-completeness

This is a massive topic. A page or two in summary cannot do justice. I will just mention
some very informal ideas here.

For a problem to be in the NP complexity class, it should be a decision problem (i.e.,
the output is a yes or a no), and any proposed solution should be verifiable in polynomial
time. NP stands for “non-deterministic polynomial (time)”. A subset of NP is the set P
of all decision problems that have polynomial-time solutions. Within NP, but outside of P,
are decision problems for which no polynomial time algorithm is known, but for which a
proposed solution can be verified in polynomial time. Part of this space contains the class of
NP-complete problems (NPC), which have an additional property. They are at least as hard
as any problem in NP. What this also means is that if anyone ever solves an NPC problem
in polynomial time, then there must be a polynomial-time solution for every problem in
NP, which means that all such problems are in fact in P, hence P=NP. On the other hand,
if anyone ever proves that an NPC problem has no polynomial-time solution, then neither
can any other NPC problem, because by definition they are at least as hard. So essentially,
all NPC problems are at least as hard as each other, and have a common fate. When we
say “at least as hard”, we allow some flexibility, as we do with Θ notation where we allow
multiplicative constants. When dealing with NP, we allow polynomial flexibility. So any
two algorithms in P are in some sense equivalent, because they both have polynomial-time
solutions. Two problems in NPC may be equivalent in the sense that if we knew how to solve
one, then we could solve the other with some extra (multiplicative or additive) polynomial-
time overhead. At the moment, we don’t know how to solve any NPC problem in polynomial
time, so this overhead is insignificant.

So far we have focused on decision problems. There are other “hard” problems as well,
but they don’t get to be in the NP class. In fact many decision problems have optimization
versions. For instance, “does this graph have a path of length at least k?” is a decision
problem, and the optimization version is “in this graph, find the length of the smallest
path”. Clearly, the ability to solve this optimization problem implies ability to solve the
decision problem. Optimization problems are at least as hard, but sometimes not much
harder at all. For instance, sometimes we can just binary search with decision problems to
optimize.

The class of NP-hard problems contains problems that are at least as hard as anything
in NP. That means that NPC problems are in fact NP-hard, but there are also NP-hard
problems that are not in NP and thus not NPC. NPC problems are, by definition, NP-hard
problems that are in NP. One reason for a problem, X, to be NP-hard but not NPC is that
X is not a decision problem. On the other hand, even if X is an NP-hard decision problem,
it might not be NPC because we don’t know what solving another NPC problem would
imply for X. In other words, we might not know how to solve X efficiently (in polynomial
time), given an efficient solution for an NPC problem. To rephrase once more, X can’t be
in NPC if that contradicts the status of all the other NPC problems as “at least as hard as
any problem in NP”. We would need to show that one of those problems is at least as hard
as X, for X to become NPC as well. And that means knowing how to solve X efficiently if
one of the other NPC problems gets solved.

51

Because NP-hard problems are at least as hard as any problem in NP, an efficient solution
to an NP-hard problem does imply that P=NP.

So, it’s easy to accept that there are decision problems with efficiently verifiable solutions,
but no efficient solutions (yet), but why are there NPC problems? In other words, what gives
them that extra status of being just as hard as any problem in NP? That is a long story, but
in a nutshell we can think of all the NPC problems as vertices in a directed graph, where a
directed edge from x to y tells us that x is at least as hard as y. For every problem to be
as hard as every other one, we need every problem (vertex) to be able to reach every other
one. Fortunately, there exists a problem known to be at least as hard as every problem in
NP, so half the work is done. (For proper details, please take a complexity theory course).
That means that every time we think that we are dealing with a hard problem, x, we just
need to show that it is at least as hard as some other problem y, already known to be hard.
The existing problem y can trace all the way back to the “root”, and because the root is
automatically harder than x we will have a cycle of hardness.

To show that one problem x is at least as hard as another, y, we perform a reduction.
Reductions are not restricted to NPC problems. The idea is as follows. Take a problem y
that has a known lower bound, or a suspected lower bound (for instance NPC). Figure out
how to efficiently (i.e., faster than the lower bound) transform the input for y into input for
x. Also figure out how to map the output of x to output of y, efficiently. Then y can be
solved by making these transformations and solving x. Given that the transformations are
efficient, there must be something else that slows down this particular solution of y. The
only culprit can be the step of solving x. Thus solving x is the bottleneck, and x is at least
as hard as y. Notice that x could be way harder than y, or maybe y is also at least as hard
as x. With a reduction, we don’t get this information. All we know is that it x at least as
hard as y. This is a one-way conclusion. Of course, if x ends up with an efficient solution,
then via this reduction so does y. So if y was NPC, a reduction as above will either show
that x is NP-hard, and if x is solved in polynomial time then so is y (which will imply that
P=NP).

To recap, we take a known NPC problem, show how to transform its input into a new
problem in polynomial time, do the same for the output (decision), and this means that the
new problem must be NP-hard. Why just NP-hard? Because all we’ve shown is that it is at
least as hard as an NPC-problem, which by definition is at least as hard as anything in NP.
To conclude that the new problem is in fact NPC, first of all it must be a decision problem,
but also we would have to show how to verify any proposed solution in polynomial time, i.e.,
show that it is in NP. Remember, NPC means NP-hard and in NP.

52

