DAG: directed acyclic graph

no (directed) cycles

not a DAG
Topological sort (on a DAG)

"Sort" all vertices (place in line) s.t. all directed edges are →

V₄ → V₅ → V₁ → V₃ → V₂

implied
Topological Sort (on a DAG)

"Sort" all vertices (place in line) s.t. all directed edges are implied.
DFS tree from V_1: $V_1 \xrightarrow{} V_2 \xrightarrow{} V_3$

directly gives us some info, but...

"Sort" all vertices (place in line) s.t. all directed edges are

Topological Sort (on a DAG)
DFS tree from v_1: $v_1 \rightarrow v_2 \rightarrow v_3$

- directly gives us some info, but...

 - notice, we visited v_2 before v_3

 - Otherwise
DFS tree from v_1:

$V_1 \rightarrow V_2 \rightarrow V_3$

Directly gives us some info, but...

Notice, we visited v_2 before v_3

Otherwise

We need this order:

$V_1 \rightarrow V_3 \rightarrow V_2$
DFS tree from v_1:

- Directly gives us some info, but...
- Notice, we visited v_2 before v_3.

Rule: sort/output by finish time. v_2 finishes first. Then v_3. Then v_1.
OR

Continue DFS: search \(v_4, v_5 \)
OR

\[\begin{align*}
V_1 & \rightarrow V_3 \rightarrow V_2 \\
V_1 & \rightarrow V_4, V_5 \\
\end{align*} \]

Continue DFS: search \(V_4, V_5 \)

\[\begin{align*}
V_4 & \rightarrow V_5 \\
\end{align*} \]

group 1

group 2

group 1 finished before group 2
group 1 finished before group 2, so:

$V_4 \rightarrow V_5$

$V_1 \leftrightarrow V_3 \rightarrow V_2$
group 1 finished before group 2, so:

- Continue DFS: search v_4, v_5
 - $v_4 \rightarrow v_5$
 - $v_1 \leftarrow v_3 \rightarrow v_2$

 can add these; v_4 found v_3, v_1, but they were marked
group 1 finished before group 2, so:

We could have had other groups or DFS trees, but each would give a valid topological sort.
Intuition

DFS trees
Intuition

impossible

DFS trees
Intuition

If $x \rightarrow y$ is implied in a DFS tree then y was explored after x. So y finished first.
Intuition

If $x \rightarrow y$ is implied in a DFS tree then y was explored after x. So y finished first.

DFS trees

we output correctly
If $x \rightarrow y$ is implied in a DFS tree then y was explored after x. So y finished first.

If $x \rightarrow z$ not in tree & not implied, then ?
Intuition

If $x \rightarrow y$ is implied in a DFS tree then y was explored after x.

So y finished first

If $x \rightarrow z$ not in tree & not implied, then x was explored after z.

(subtree) (subtree)

(otherwise we would have $x \rightarrow z$)

So $?$
Intuition

If $x \rightarrow y$ is implied in a DFS tree then y was explored after x.

So y finished first

If $x \rightarrow z$ not in tree & not implied, then x was explored after z.

(subtree)

(otherwise we would have $x \rightarrow z$)

(subtree)

So z finished first

we output correctly
Intuition

If $x \rightarrow y$ is implied in a DFS tree then y was explored after x.

So y finished first

If $x \rightarrow z$ not in tree & not implied, then x was explored after z.

(subtree)

(otherwise we would have $x \rightarrow z$)

So z finished first

In both cases, we output correctly
Run DFS in any order.
Run DFS in any order.

When a vertex v has been processed entirely, add it to a list.
Summary

Run DFS in any order.

When a vertex v has been processed entirely, add it to a list.

Every vertex reachable from v will be done before v, so it will already be in the list.
Run DFS in any order.

When a vertex \(v \) has been processed entirely, add it to a list.

Every vertex reachable from \(v \) will be done before \(v \), so it will already be in the list.

Similarly, \(v \) will be ahead of any vertex that can reach it.