Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements i, j

Branches represent outcome of comparison

Left: $i \leq j$
Right: $i > j$
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements i, j

Branches represent outcome of comparison

Left: $i \leq j$
Right: $i > j$

Example: sort a_1, a_2, a_3
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements \(i, j \)
Branches represent outcome of comparison
- **Left**: \(i \leq j \)
- **Right**: \(i > j \)

Example: sort \(a_1, a_2, a_3 \)

Each leaf is a possible output.
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements i, j.

Branches represent outcome of comparison:
- Left: $i \leq j$
- Right: $i > j$

Example: sort a_1, a_2, a_3

Each leaf is a possible output:
- $a_3 > a_2 > a_1$
- $a_2 > a_3 > a_1$
- $a_1 > a_2 > a_3$
- $a_1 > a_3 > a_2$
- $a_3 > a_1 > a_2$
- $a_2 > a_1 > a_3$
- $a_1 > a_2 > a_3$
- $a_2 > a_3 > a_1$
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements i,j
Branches represent outcome of comparison
Left: \(i \leq j \)
Right: \(i > j \)

Example: sort \(a_1, a_2, a_3 \)

Verify on 9, 4, 6
\(a_3 > a_2 > a_1 \)

Each leaf is a possible output
Algorithms represented as Decision Trees

Internal nodes represent comparison of two elements \(i, j\)
Branches represent outcome of comparison
- Left: \(i \leq j\)
- Right: \(i > j\)

Example: sort \(a_1, a_2, a_3\)

Verify on \(9, 4, 6\)
\(a_1, a_2, a_3\)

Each leaf is a possible output
Each root-to-leaf path represents an execution of algo.
Algorithms represented as decision trees

Internal nodes represent comparison of two elements i,j
Branches represent outcome of comparison
- Left: $i \leq j$
- Right: $i > j$

Example: sort a_1, a_2, a_3

Each leaf is a possible output
Each root-to-leaf path represents an execution of algo.

Verify on 9,4,6
a, a_2, a_3

$a_3 > a_2 > a_1$

Any decision-based algorithm can be encoded as a decision tree.
If you are designing a decision tree
 it's up to you to avoid comparing the same elements many times.
If you are designing a decision tree, it's up to you to avoid comparing the same elements many times. The worst-case run-time is precisely the longest root-leaf path.
If you are designing a decision tree, it’s up to you to avoid comparing the same elements many times. The worst-case run-time is precisely the longest root-leaf path. You shouldn’t compare $a_i:a_j$ twice on one path.

\downarrow so max path length $= (n)$

For a good algo

-for sorting
If you are designing a decision tree, it's up to you to avoid comparing the same elements many times. The worst-case run-time is precisely the longest root-leaf path.

\[\text{so max path length} = \binom{n}{2} \]

Why not write all algorithms this way? (so much prettier than pseudocode)
If you are designing a decision tree, it's up to you to avoid comparing the same elements many times. The worst-case run-time is precisely the longest root-leaf path. You shouldn't compare $a_i:a_j$ twice on one path.

\[\text{so max path length} = \binom{n}{2} \]

Why not write all algorithms this way? (so much prettier than pseudocode)

\[\hookrightarrow \text{It's huge and repetitive.} \]

\[\hookrightarrow \text{It really lists every possible execution of algo.} \]
If you are designing a decision tree, it's up to you to avoid comparing the same elements many times. The worst-case run-time is precisely the longest root-leaf path. You shouldn't compare \(a_i : a_j \) twice on one path. \(\Downarrow \) so max path length = \(\binom{n}{2} \)

Why not write all algorithms this way? (so much prettier than pseudocode)

\(\Downarrow \) It's huge and repetitive.
 It really lists every possible execution of algo.
 You actually might need a different tree for each \(n \).
If you are designing a decision tree, it's up to you to avoid comparing the same elements many times. The worst-case run-time is precisely the longest root-leaf path. You shouldn't compare \(a_i : a_j \) twice on one path.

\[\Rightarrow \text{so max path length} = (n) \]

Why not write all algorithms this way? (so much prettier than pseudocode)

\[\Rightarrow \text{It's huge and repetitive.} \]

It really lists every possible execution of algo. You actually might need a different tree for each \(n \).

What is the shortest possible tree for comparison-sort?
A correct decision tree for sorting must have every possible output represented at a leaf node.

#leaves » ?
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

#leaves ?
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\(\# \text{leaves} \geq n! \)
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\#\text{leaves} \geq n! \]

height of tree = worst case time = h \quad \Rightarrow \quad \#\text{leaves} \leq ?
A correct decision tree for sorting must have every permutation of the input represented at a leaf node. \(\#\text{leaves} \geq n!\)

Height of tree = worst case time = \(h\) \(\implies\) \(\#\text{leaves} \leq 2^h\)

[Binary tree; every node has 2 children]
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\#\text{leaves} \geq n! \]

height of tree = worst case time = \(h \) \(\implies \#\text{leaves} \leq 2^h \) [binary tree; every node has 2 children]

so, \(n! \leq \#\text{leaves} \leq 2^h \)
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\#\text{leaves} \geq n! \]

Height of tree = worst case time = \(h \) \(\Rightarrow \#\text{leaves} \leq 2^h \) [binary tree; every node has 2 children]

So, \(n! \leq \#\text{leaves} \leq 2^h \) \(\Rightarrow \log n! \leq \log 2^h \)
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\#\text{leaves} \geq n! \]

height of tree = worst case time = \(h \) \(\Rightarrow \) \#leaves \(\leq 2^h \)

[binary tree; every node has 2 children]

so, \(n! \leq \#\text{leaves} \leq 2^h \) \(\Rightarrow \) \(\log n! \leq \log 2^h \) \(\Rightarrow \) \(h \geq \log n! \)
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

- \(\# \text{leaves} \geq n! \)

- Height of tree = worst case time = \(h \) \(\Rightarrow \) \(\# \text{leaves} \leq 2^h \)
 [binary tree; every node has 2 children]

So, \(n! \leq \# \text{leaves} \leq 2^h \) \(\Rightarrow \) \(\log n! \leq \log 2^h \) \(\Rightarrow \) \(h \geq \log n! \)

Stirling's formula: \(n! \geq (\frac{n}{e})^n \)
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[\#\text{leaves} \geq n! \]

height of tree = worst case time = \(h \) \(\Rightarrow \) \(\#\text{leaves} \leq 2^h \)

[binary tree; every node has 2 children]

so, \(n! \leq \#\text{leaves} \leq 2^h \) \(\Rightarrow \) \(\log n! \leq \log 2^h \) \(\Rightarrow \) \(h \geq \log n! \)

Stirling's formula: \(n! \approx (\frac{n}{e})^n \)

\(h \approx \log(\frac{n}{e})^n = n \cdot \log \frac{n}{e} \)
A correct decision tree for sorting must have every permutation of the input represented at a leaf node.

\[
\text{\#leaves} \geq n!
\]

height of tree = worst case time = \(h \) \(\implies \) \#leaves \(\leq 2^h \)

[binary tree; every node has 2 children]

so, \(n! \leq \#\text{leaves} \leq 2^h \) \(\implies \) \(\log n! \leq \log 2^h \implies h \geq \log n! \)

Stirling's formula: \(n! \approx (\frac{n}{e})^n \)

\[
\log n! \geq \log (\frac{n}{e})^n = n \cdot \log \frac{n}{e}
\]

\[
= n \log n - \log e = n \log n - \Theta(n)
\]

\[
h = \Omega(n \log n)
\]

extra analysis of \(\log n! \) follows
\[\log(n!) = O(n \log n) \]
\[\log(n!) \leq \log(n^n) = n \log n \Rightarrow \log(n!) \leq 1 \cdot n \log n \quad \text{for } n \geq 1 \]

\[\log(n!) = \Omega(n \log n) \]

\[\log(n!) = \log(n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdots \cdots 3 \cdot 2 \cdot 1) \]
\[= \log(n \cdot \underbrace{1 \cdot (n-1)}_{\text{even}} \cdot \underbrace{2 \cdot (n-2)}_{\text{even}} \cdot \underbrace{3 \cdot (n-3)}_{\text{even}} \cdot 4 \cdots \cdots \cdots \underbrace{n\cdot(n-\frac{n}{2})\cdot(n-\frac{n}{2})}_{\text{even}}) \]
\[\geq \log(n \cdot n \cdot n \cdot \cdots \cdots \cdots n) \]
\[= \log(n^{n/2}) \quad \text{(assume } n: \text{even}) \Rightarrow \log(n!) \geq \frac{n}{2} \log n \]

\[\frac{1}{2} n \log n \leq \log(n!) \leq n \log n \]

In fact, Stirling's approximation:
\[\ln(n!) = n \cdot \ln(n) - n + O(\ln(n)) \]