Input: a set of numbers $a_1, a_2, a_3, \ldots, a_n$
Output: a list of a_i in sorted order (a permutation)

We want an algorithm that can handle any instance
SORTING

Input: a set of numbers $a_1, a_2, a_3, \ldots, a_n$

Output: a list of a_i in sorted order (a permutation)

We want an algorithm that can handle any instance

1st objective: get it right, always

2nd objective: get it done quickly ... and don't use lots of resources
SORTING

Input: a set of numbers $a_1, a_2, a_3, \ldots, a_n$
Output: a list of a_i in sorted order (a permutation)

We want an algorithm that can handle any instance

1st objective: get it right, always
2nd objective: get it done quickly ... and don't use lots of resources

Correctness, time efficiency, space/storage efficiency

Could also ask for a clear/understandable algo, or easy to modify, etc.
... but what are the rules?

- are the numbers integers or reals? rational? positive? distinct?
... but what are the rules?

- are the numbers integers or reals? rational? positive? distinct?
- is their size bounded?
... but what are the rules?

- are the numbers integers or reals? rational? positive? distinct?
- is their size bounded?
- can we add them or just compare them?
what are the rules?

- are the numbers integers or reals? rational? positive? distinct?
- is their size bounded?
- can we add them or just compare them?
- how are they presented to us? (data structure)
what are the rules?
- are the numbers integers or reals? rational? positive? distinct?
- is their size bounded?
- can we add them or just compare them?
- how are they presented to us? (data structure)

We'll discuss this soon, so let's focus on:
- only comparing elements (every comparison takes constant time)
- input in an array
Sorting: start with a simple algo that we can prove is correct

Insertion sort
Sorting: start with a simple algo that we can prove is correct

Insertion sort

- Assume that the prefix of your list (array) is sorted

\[
\]

\[\text{sorted}\]
Sorting: start with a simple algo that we can prove is correct

Insertion sort

- Assume that the prefix of your list (array) is sorted
- Increase the size of this sorted subset

- **sorted**

- **sorted**
Sorting: start with a simple algo that we can prove is correct

Insertion sort

- Assume that the prefix of your list (array) is sorted
- Increase the size of this sorted subset
- Repeat
- Start with a trivial prefix: size=1

Before

\[
\]

sorted

After

\[
\]

sorted
Sorting: start with a simple algo that we can prove is correct

Insertion sort
- Assume that the prefix of your list (array) is sorted
- Increase the size of this sorted subset
- Repeat
 - start with a trivial prefix: size=1

Before
\[
\begin{array}{c}
< < < < < < \ ? \ ? \ ? \ ? \ ? \ ? \\
\text{sorted}
\end{array}
\]

After
\[
\begin{array}{c}
< < < < < < \ ? \ ? \ ? \ ? \ ? \ ? \\
\text{sorted}
\end{array}
\]

Use the element next to the prefix, to increase the prefix size
$S_1, S_2, S_3, S_4, S_5, S_6 \rightarrow ? \quad ?$
If the prefix has size j then we can insert "?" after at most...
If the prefix has size j then we can insert "?" after at most j comparisons.
With $\leq j$ comparisons we can increase the size of our sorted prefix from j to $j+1$.
With $\leq j$ comparisons we can increase the size of our sorted prefix from j to $j+1$.

We want a prefix = the whole set = size n.
With \(\leq j \) comparisons we can increase the size of our sorted prefix from \(j \) to \(j+1 \).

We want a prefix = the whole set = size \(n \)

\[
\text{comparisons} \leq \sum_{j=1}^{n} j = 1 + 2 + 3 + \ldots + (n-2) + (n-1) + n
\]
With $\leq j$ comparisons we can increase the size of our sorted prefix from j to $j+1$.

We want a prefix = the whole set = size n

$$\text{comparisons} \leq \sum_{j=1}^{n} j = 1 + 2 + 3 + \ldots + (n-2) + (n-1) + n = \frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n = \text{worst case #comparisons}$$
With \(\leq j \) comparisons we can increase the size of our sorted prefix from \(j \) to \(j+1 \).

We want a prefix = the whole set = size \(n \)

\[
\text{comparisons} \leq \sum_{j=1}^{n} j = 1 + 2 + 3 + \ldots + (n-2) + (n-1) + n = \frac{n(n+1)}{2}
\]

\[= \frac{1}{2}n^2 + \frac{1}{2}n = \text{worst case #comparisons}\]

To actually implement this, you need some extra time and space to allow swapping but it's just a constant, i.e maybe time = \(5 \cdot (\frac{1}{2}n^2 + \frac{1}{2}n) \)