SORTING

Input: a set of numbers $a_1, a_2, a_3, \ldots, a_n$

Output: a list of a_i in sorted order (a permutation)

We want an algorithm that can handle any instance
SORTING

Input: a set of numbers \(a_1, a_2, a_3 \ldots a_n \)

Output: a list of \(a_i \) in sorted order (a permutation)

We want an algorithm that can handle any instance

1st objective: get it right, always

2nd objective: get it done quickly ... and don't use lots of resources
SORTING

Input: a set of numbers $a_1, a_2, a_3, ... a_n$

Output: a list of a_i in sorted order (a permutation)

We want an algorithm that can handle any instance

1st objective: get it right, always

2nd objective: get it done quickly ... and don't use lots of resources

Correctness, time efficiency, space/storage efficiency

Could also ask for a clear/understandable algo, or easy to modify, etc.
... but what are the rules?

- are the numbers integers or reals? rational? positive? distinct?
... but what are the rules?

- are the numbers integers or reals? rational? positive? distinct?
- is their size bounded?
... but what are the rules?

- Are the numbers integers or reals? Rational? Positive? Distinct?
- Is their size bounded?
- Can we add them or just compare them?
... but what are the rules?

- Are the numbers integers or reals? Rational? Positive? Distinct?
- Is their size bounded?
- Can we add them or just compare them?
- How are they presented to us?
... but what are the rules?

- are the numbers integers or reals? rational? positive? distinct?
- is their size bounded?
- can we add them or just compare them?
- how are they presented to us?

We'll discuss this soon, so let's focus on:

- only comparing elements : in time $t \Rightarrow$ some constant
- input in an array
Sorting: start with a simple algo that we can prove is correct

Insertion sort
Sorting: start with a simple algo that we can prove is correct

Insertion sort

- Assume that the prefix of your list (array) is sorted
Sorting: start with a simple algo that we can prove is correct

Insertion sort

- Assume that the prefix of your list (array) is sorted
- Increase the size of this sorted subset
Sorting: start with a simple algo that we can prove is correct

Insertion sort

- Assume that the prefix of your list (array) is sorted
- Increase the size of this sorted subset
- Repeat
 - start with a trivial prefix: size=1

Before: [< < < <]

After: [< < < <]

sorted
Sorting: start with a simple algo that we can prove is correct

Insertion sort

- Assume that the prefix of your list (array) is sorted
- Increase the size of this sorted subset
- Repeat
 - start with a trivial prefix: size=1

Before

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
\hline
\end{array}
\]

sorted

After

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
\hline
\end{array}
\]

sorted

Use the element next to the prefix, to increase the prefix size

\[S_6 \leq ? \rightarrow \text{DONE} \]
$S_6 \leq ? \rightarrow \text{DONE}$

$S_6 > ? \rightarrow \text{swap & keep searching}$

next comparison
If the prefix has size j then we can insert "?" after at most...
If the prefix has size j then we can insert "?" after at most j comparisons.
With $\leq j$ comparisons we can increase the size of our sorted prefix from j to $j+1$.
With $\leq j$ comparisons we can increase the size of our sorted prefix from j to $j+1$.

We want a prefix = the whole set = size n.
With \(\leq j \) comparisons we can increase the size of our sorted prefix from \(j \) to \(j+1 \).

We want a prefix = the whole set = size \(n \)

\[
\text{comparisons} = \sum_{j=1}^{n} j = 1 + 2 + 3 + \cdots + (n-2) + (n-1) + n
\]
With $\leq j$ comparisons we can increase the size of our sorted prefix from j to $j+1$.

We want a prefix = the whole set = size n

$$\text{comparisons} = \sum_{j=1}^{n} j = 1 + 2 + 3 + \ldots + (n-2) + (n-1) + n = \frac{n(n+1)}{2}$$
With \(\leq j \) comparisons we can increase the size of our sorted prefix from \(j \) to \(j+1 \).

We want a prefix = the whole set = size \(n \)

\[
\text{comparisons} = \sum_{j=1}^{n} j = 1 + 2 + 3 + \ldots + (n-2) + (n-1) + n = \frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n
\]

To actually implement this, you need some extra time space to allow swapping but it's just a constant.
With $\leq j$ comparisons we can increase the size of our sorted prefix from j to $j+1$.

We want a prefix = the whole set = size n

$$\sum_{j=1}^{n} j = 1 + 2 + 3 + \ldots + (n-2) + (n-1) + n = \frac{n(n+1)}{2}$$

$$= \frac{1}{2}n^2 + \frac{1}{2}n$$

To actually implement this, you need some extra time & space to allow swapping but it's just a constant. i.e. maybe time = $5 \cdot (\frac{1}{2}n^2 + \frac{1}{2}n)$