ORDER STATISTICS - MEDIAN FINDING, RANK SELECTION

Given n unsorted elements, find the k-th smallest.

We will assume distinct elements.

\Rightarrow easy $O(n)$ if $k=O(1)$ or $n=O(1)$.

(median is hardest)

Algorithm by: Blum, Floyd, Pratt, Rivest, Tarjan

1973
Let this run in time $T(n)$

$\text{Select}(r, 1...n)$ // find r^{th} smallest # within array[1...n]

1) Form $\frac{n}{5}$ groups of 5 elements // the last group can have \leq 5
2) Find median in each group // brute force.
3) Recursively find $x =$ median-of-medians
4) Compare all elements to x \rightarrow compute $\text{rank}[x] = p$
5) if $\text{rank}[x] = p = r$, done, Else use x as pivot to partition input
 (set up binary search)
6) if $p > r$ // $\text{rank}[x] > r$, so search lower
 Select($r, 1...p-1$)
 else // $p < r$, so search higher
 Select($r-p, p+1...n$)
1) Form \(\frac{n}{5} \) groups of 5 elements \(\Theta(n) \) ... in fact, no work

Don't worry about extras could add three elements = \(\infty \)

OR

remove MAX & MAX-1 \(\Theta(n) \)
1) Form \(\frac{n}{5} \) groups of 5 elements \(\Theta(n) \)
2) Find median in each group

\[\frac{n}{5} \cdot \Theta(1) = \Theta(n) \]
1) Form $\frac{n}{5}$ groups of 5 elements $\Theta(n)$

2) Find median in each group (and re-organize) $\frac{n}{5} \cdot \Theta(1) = \Theta(n)$
1) Form $\frac{n}{5}$ groups of 5 elements $\Theta(n)$
2) Find median in each group (and re-organize) $\frac{n}{5} \cdot \Theta(1) = \Theta(n)$
3) Recursively find $X = \text{median-of-medians}$

Time $\rightarrow T(\frac{n}{5})$
1) Form \(\frac{n}{5} \) groups of \(5 \) elements \(\Theta(n) \)

2) Find median in each group (and re-organize) \(\frac{n}{5} \cdot \Theta(1) = \Theta(n) \)

3) Recursively find \(x = \text{median-of-medians} \) (and re-organize) \(T\left(\frac{n}{5} \right) + \Theta(n) \)
1) Form $\frac{n}{5}$ groups of 5 elements $\Theta(n)$

2) Find median in each group (and re-organize) $\frac{n}{5} \cdot \Theta(1) = \Theta(n)$

3) Recursively find $X = \text{median-of-medians}$ (and re-organize) $T\left(\frac{n}{5}\right) + \Theta(n)$

Re-organizing is not part of the algorithm. It's part of the proof. (although we could afford it)

That's the algorithm. Now to find $T(n)$
Let \(x \rightarrow y \) mean \(x > y \).
\[\#\text{"big"} = \#\text{"small"} \geq 3 \cdot \frac{n/5}{2} \leq n \]

- Columns containing big elements
- Big items per column
\[\# \text{big} \geq 3 \cdot \frac{n/3}{\lfloor 2 \rfloor} \geq 3 \cdot \frac{n}{10} \]

\[\frac{n}{\lfloor s \rfloor} \rightarrow \frac{n}{s} \text{ if we ignore incomplete column} \]

\[\frac{n/2}{L^2} \rightarrow \frac{n/2}{2} \text{ if } n: \text{even} \]

\(\Theta(n) \text{ work takes care of this} \)
$\#^{\text{big}} = \#^{\text{small}} \geq 3 \cdot \frac{n/5}{\sqrt{2}} \geq 3 \cdot \frac{n}{10}$

$\geq \frac{1}{4} n$ For $n \geq 50$

If x is not at the target rank/index, and we need to search lower (i.e., $\text{rank}(x) > \text{target}$), then recurse on all elements except "big" [symmetrically, if searching for $\text{target} > \text{rank}(x)$, recurse on all except "small"]

```
| r | x | . . | . . . . . . . . |
```

recurse ← [ignore]
If \(\times \) is not at the target rank/index, and we need to search lower (i.e., \(\text{rank}(x) > \text{target} \)), then recurse on all elements except "big".

Symmetrically, if searching for \(\text{target} < \text{rank}(x) \), recurse on all except "small".

\[
T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{3n}{4}\right) + \Theta(n) \quad \text{steps 1 & 2: find medians of 5 & partition}
\]

\[\text{find } x \quad \text{recurse if } \text{rank}(x) \neq \text{target}\]

\[\text{for } n > 50 \text{ and } \#	ext{"big"} = \#	ext{"small"} \geq 3 \cdot \frac{n^{7/8}}{\sqrt{2}} \geq 3 \cdot \frac{n}{10} \geq \frac{1}{4} n\]

For \(n \geq 50 \)
\[T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{3n}{4}\right) + \Theta(n) \]

Claim \(T(n) \leq c \cdot n \)

\[\leq c \cdot \frac{n}{5} + c \cdot \frac{3n}{4} + dn \]

\[= \frac{19}{20} cn + dn = cn - \left(\frac{1}{20} cn - dn\right) \leq cn \text{ if } c > 20d \]

QED
collect medians-of-5
solve new problem
(return median)
will rank somewhere in middle 50% of original list
\(\langle T(\frac{3n}{4}) \rangle \)

Find \(\text{rank}(x) \)

If \(x \neq \text{target} \), recurse on \(\langle \frac{3n}{4} \rangle \) of list
What were they thinking? (my guess)

- Goal: $\Theta(n)$
 $[\Omega(n)$ lower bound; $O(n\log n)$ is trivial]

- Exploit \sim geometric series:
 $T(n) = T\left(\frac{n}{b}\right) + O(n)$

 or $T(n) = T(xn) + T(yn) + O(n)$

 ... where $x+y < 1$

\Rightarrow spend $T(xn) + O(n)$ time

 to make sure that only yn candidates remain
Why groups of 5?

In class I showed that groups of 3 no longer give $O(n)$ and mentioned that groups must have constant size to keep $O(n)$. After that, it's an optimization to get a better leading constant.