Dynamic BALANCED SEARCH TREES (Non-Random)

Objectives: search, insert, delete in $O(\log n)$ time

- always maintain $\Theta(\log n)$ height & update in $O(\log n)$ time

Variations: AVL, 2-3, 2-3-4, B-trees, red-black, skip lists, treaps today
RED-BLACK trees

Structure:
1) nodes are colored red or black.
2) root is always black.
3) add black "dummy" leaves so every "real" node has 2 children.

Important Rules:
4) every red node has a black parent.
5) for any node \(x \): all paths down to leaves contain equal number of black nodes = black-height[\(x\)] not including \(x \)
4) every red node has a black parent.

5) for any node x: all paths down to leaves contain equal number of black nodes = black-height[x]

→ Fails rule 5
4) every red node has a black parent.

5) for any node \(x \): all paths down to leaves contain equal number of black nodes = \(\text{black-height}[x] \)

\[\rightarrow \text{fails rule 5} \Rightarrow \text{fix by making some nodes red.} \]

black-height difference : 6 vs 3
No hope
to recolor
...
too unbalanced

Any root→leaf path of size k must have $\geq \frac{k}{2}$ black nodes. So if any path is >2 times longer than another, we can’t make it RB.

CONTRACTION
Black nodes are fully balanced.
If root(T) has same black-height on all paths then height(T') is perfectly balanced

Q: what is max.degree of T'? (2-3-4)

#leaves in T : n+1 = size(T)+1
#leaves in T' : same
height(T') \leq \log(n+1) \quad [\text{higher degree} \Rightarrow \text{smaller height}; \text{worst-case: binary}]

Re-inserting red nodes: at most doubles height \rightarrow \text{height}(T) \leq 2 \log(n+1)
We have seen that RB trees are reasonably balanced: \(\sim 2 \log n \).

Search, min, max, next, prev: \(O(\log n) \) time.

Next: how to update RB trees (insert, delete).

Rotations in arbitrary BSTs

1. **Right-rotate** \((T_1, B)\):
 - \(T_1 \):
 - `A`
 - `B`
 - `X`
 - `Y`

 \[X \leq A \leq Y \leq B \leq Z \]

2. **Left-rotate** \((T_2, A)\):
 - \(T_2 \):
 - `A`
 - `B`
 - `X`
 - `Y`

 \[X \leq A \leq Y \leq B \leq Z \]

\(O(1) \) time.
Insert in Red-Black Trees

Greedy (optimistic) start:

1) Insert as in any BST
2) Color new node red (keeps black-height ok)
3) If parent is also red (violate parent rule 4)
 - Then color parent black and
 - Look for problems further up

--

Begins an error-correcting trail up to root, involving $O(i)$ recolorings and rotations per level

$O(\log n)$ time
example of $O(1)$-time error-corrections (per level)

1. Insert 15
2. Recolor parent of 15
3. Create black-height problem

Problem transferred from new node to its grandparent.
The algorithm is basically: recolor upwards until ineffective, then do 2 rotations.

\[\text{RB-insert}(x) \]
- initial step: regular insert & color \(x \) red.
- while \(x \neq \text{root} \) and \(p(x) \) is red
 \[
 \begin{cases}
 g(x) & \text{if } p(x) = \text{left}(g(x)) \\
 p(x) & \text{or } \begin{array}{c}
 \text{or } \\
 x
 \end{array}
 \end{cases}
 \]

why does \(g(x) \) exist?

\(p(x) = \text{red} \) so it isn't the root.
The algorithm is basically: recolor upwards until ineffective, then do 2 rotations.

\[\text{RB-insert}(x) \]
- Initial step: regular insert & color \(x \) red.
- While \(x \neq \text{root} \) and \(p(x) \) is red
 - If \(p(x) = \text{left}(g(x)) \)
 - \(y \leftarrow \text{right}(g(x)) \)

\[\begin{cases} \text{if } p(x) = \text{left}(g(x)) \text{ \{ \text{don't care about colors} \}} \end{cases} \]

why can we assume \(y \) exists?

It is at least a dummy leaf.

in which case the subtree of \(g(x) \) is before inserting \(x \).
The algorithm is basically: recolor upwards until ineffective, then do 2 rotations.

\textbf{RB-insert} \(x\):
- initial step: regular insert & color \(x\) red.
- while \(x \neq \text{root}\) and \(p(x)\) is red
 \begin{enumerate}
 \item if \(p(x) = \text{left}(g(x))\)
 \begin{enumerate}
 \item y ← \text{right}(g(x))
 \item if y is red then run CASE 1
 \item else if \(x = \text{right}(p(x))\) then run CASE 2.
 \end{enumerate}
 \end{enumerate}
 Run CASE 3
 \begin{enumerate}
 \item else \(p(x) = \text{right}(g(x))\)
 \begin{enumerate}
 \item do as before but with "left" & "right" switched
 \item \text{symmetric}
 \end{enumerate}
 \end{enumerate}
- color the root black
if y is red then run **CASE 1**

Every \blacktriangle contributes same to black-height.

Recolor $y, p(x), g(x)$

Let $x \leftarrow g(x)$

blackheight($p(x)$) preserved

$(repeat$ if new $p(x)$ is red)$)
else if $x = \text{right}(p(x))$ then run **CASE 2**.

- **rotate-left**($p(x)$)
- switch labels $x \leftrightarrow p(x)$

conditions of case 3

Run **CASE 3**

- **rotate-right**($g(x)$)
- re-color p, g
- relabel g

x moves up in tree

Now $p(x)$ is black.

Exit while
The algorithm is basically: recolor upwards until ineffective, then do 2 rotations.

RB-insert(x)
- initial step: regular insert & color x red.
- while $x \neq$ root and $p(x)$ is red
 - if $p(x) = \text{left}(g(x))$
 - $y \leftarrow \text{right}(g(x))$
 - if y is red then run **CASE 1**
 - else if $x = \text{right}(p(x))$ then run **CASE 2**
 - Run **CASE 3**
 - else if $p(x) = \text{right}(g(x))$
 - do as before but with "left" & "right" switched

color the root black