BACK TO SORTING: QUICKSORT

a Divide & Conquer algorithm that runs "in-place"
BACK TO SORTING: QUICKSORT

a Divide & Conquer algorithm that runs “in-place”

- Divide: choose a pivot & place it s.t. everything before is smaller & everything after is not smaller

\[
\begin{array}{cccccccccccc}
\end{array}
\Rightarrow
\begin{array}{cccccccccccc}
< & X & X & > & X
\end{array}
\]
BACK TO SORTING: QUICKSORT

a Divide & Conquer algorithm that runs “in-place”

- Divide: choose a pivot & place it s.t. everything before is smaller & everything after is not smaller

- Conquer: Quicksort each side of pivot
BACK TO **SORTING**: **QUICKSORT**

a **Divide & Conquer** algorithm that runs "in-place"

- **Divide**: choose a **pivot** & place it s.t. everything before is smaller & everything after is not smaller

 \[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c} X & ? & ? & ? & ? & ? & ? & ? \Rightarrow & < & X & X & > & x \end{array} \]

- **Conquer**: Quicksort each side of pivot

* Notice that after **Divide**, \(x \) is in its final (sorted) position.
 So there is nothing to do for [Combine] (merge)
BACK TO SORTING: QUICKSORT

A Divide & Conquer algorithm that runs "in-place"

- Divide: choose a pivot & place it s.t. everything before is smaller
 & everything after is not smaller

- Conquer: Quicksort each side of pivot

Notice that after Divide, X is in its final (sorted) position.
So there is nothing to do for [Combine]

\[T(n) = T(j-1) + T(n-j) + f(n) \]

\[f(n) = \begin{cases} \text{[Divide & Conquer]} & \text{for } n \geq 1 \\ \text{[Combine]} & \text{for } n < 1 \end{cases} \]

\[T(0) = 0 \]
\[T(1) = \Theta(1) \]
The heart of Quicksort is the **Divide** step.

- pivot: arbitrary → so just use first element
The heart of Quicksort is the **Divide** step

- **pivot**: arbitrary → so just use first element
- in-place indexing of pivot:

```
```

If all these are \(\geq x \), nothing to do. So advance until you find \(y < x \)
(or until the end)
The heart of Quicksort is the **Divide** step.

- **pivot**: arbitrary ⇒ so just use first element
- **in-place** indexing of pivot:

```
```

- If all these are \(\geq X \), nothing to do.
- So advance until you find \(Y < X \)
 - (or until the end)

```
```

- E.g. find \(Y \) immediately
The heart of Quicksort is the **Divide** step.

- **pivot**: arbitrary → so just use first element

- **in-place** indexing of pivot:

 if all these are \(\geq X \), nothing to do.

 So advance until you find \(Y < X \)

 (or until the end)

 e.g. find \(Y \) immediately

 or, you don’t find \(Y \) immediately

The heart of Quicksort is the **Divide** step.

- **pivot**: arbitrary → so just use first element
- **in-place** indexing of pivot:

 If all these are $\geq x$, nothing to do.
 So advance until you find $y < x$
 (or until the end)

 E.g. find y immediately

 or, you don't find y immediately

 Swap y for the element to the right of x

 Advance in array
The heart of Quicksort is the **Divide** step.

- **pivot**: arbitrary → so just use first element
- in-place indexing of pivot:

 non-trivial case: you have at least one element < x

 non-empty → if all > x, done
 ? → if all > x, done

 if all > x, nothing to do.
 So advance until you find y < x
 (or until the end)
 e.g. find y immediately

 or, you don't find y immediately

 Scan from z: if z > x, advance
 else swap z ← a

 if it exists

 swap y for the element to the right of x

 advance in array
Assume n distinct values for analysis. (not critical)

What input makes Quicksort work the most?
Assume n distinct values for analysis. (not critical)

What input makes Quicksort work the most?

⇒ already sorted input!
Assume \(n \) distinct values for analysis. (not critical)

What input makes Quicksort work the most?

\[\text{already sorted input!} \quad \text{or} \quad \text{reverse sorted} \]

\[\text{\textbf{\(T(n) = T(0) + T(n-1) + \Theta(n) = \Theta(n^2) \)}} \]

\(\text{\(n \)} \)
Assume \(n \) distinct values for analysis. (not critical)

What input makes Quicksort work the \underline{most}?

\(\rightarrow \) already sorted input! \(\rightarrow \) reverse sorted

\(\triangleleft \) every time, you get a maximally unbalanced recursion.

\(T(n) = T(0) + T(n-1) + \Theta(n) = \Theta(n^2) \)

What input makes Quicksort work the \underline{least}?
Assume n distinct values for analysis. (not critical)

What input makes Quicksort work the most?
\[\downarrow \text{already sorted input! - or - reverse sorted} \]
\[\downarrow \text{every time, you get a maximally unbalanced recursion.} \]
\[T(n) = T(0) + T(n-1) + \Theta(n) = \Theta(n^2) \]

What input makes Quicksort work the least?
\[\downarrow \text{s.t. every time your pivot splits the groups evenly.} \]
\[T(n) = 2T(\frac{n-1}{2}) + \Theta(n) = \Theta(n \log n) \]
Assume n distinct values for analysis. (not critical)

What input makes Quicksort work the most?

\[T(n) = T(0) + T(n-1) + O(n) = \Theta(n^2) \]

What input makes Quicksort work the least?

\[T(n) = 2T\left(\frac{n-1}{2}\right) + O(n) = \Theta(n \log n) \]

So, Quicksort is in-place, but can be slow. Why use it?

It's simple.
We said Quicksort is fast, i.e. $\Theta(n \log n)$, if pivot gives an even split. (ALWAYS)

What if we always split within $\frac{1}{10}$ to $\frac{9}{10}$?
We said Quicksort is fast, i.e. $\Theta(n \log n)$, if pivot gives an even split. (Always)

What if we always split within $\frac{1}{10}$ to $\frac{9}{10}$?

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + c \cdot n$$

$\begin{array}{c}
T\left(\frac{n}{10}\right) \\
T\left(\frac{9n}{10}\right)
\end{array}$
We said Quicksort is fast, i.e. $\Theta(n \log n)$, if pivot gives an even split. (ALWAYS)

What if we always split within $\frac{1}{10}$ to $\frac{9}{10}$?

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + cn$$
We said Quicksort is fast, i.e. $\Theta(n \log n)$, if pivot gives an even split. (ALWAYS)

What if we always split within $\frac{1}{10}$ to $\frac{9}{10}$?

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + c.n$$
We said Quicksort is fast, i.e. $\Theta(n \log n)$, if pivot gives an even split. (ALWAYS)

What if we always split within $\frac{1}{10}$ to $\frac{9}{10}$?

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + c.n$$
We said Quicksort is fast, i.e. $\Theta(n \log n)$, if pivot gives an even split. (ALWAYS)

What if we always split within $\frac{1}{10}$ to $\frac{9}{10}$?

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + c.n$$

$$T\left(\frac{n}{100}\right) \quad T\left(\frac{9n}{100}\right) \quad T\left(\frac{9n}{100}\right) \quad T\left(\frac{81cn}{100}\right)$$

$h_L \sim \log_{10} n \Rightarrow T(n) \gg cn \cdot \log_{10} n$

$h_R \sim \log_{10} \frac{n}{4n}$
We said Quicksort is fast, i.e. $\Theta(n \log n)$, if pivot gives an even split. (ALWAYS)

What if we always split within $\frac{1}{10}$ to $\frac{9}{10}$?

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + cn$$
We said Quicksort is fast, i.e. $\Theta(n \log n)$, if pivot gives an even split. (ALWAYS)

What if we always split within $\frac{1}{10}$ to $\frac{9}{10}$?

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + c.n$$

Any constant fraction split will give $\Theta(n \log n)$.
Repeat: if you could ensure that every pivot gives some [constant fraction of n]-split, you would get \(O(n \log n) \) ... possibly with terrible hidden constant
Repeat: if you could ensure that every pivot gives some [constant fraction of n]-split, you would get $O(n \log n)$

...possibly with terrible hidden constant

So we can't do that, but it might happen with high probability.
Repeat: if you could ensure that every pivot gives some [constant fraction of \(n \)]-split, you would get \(\Theta(n \log n) \) possibly with terrible hidden constant.

\(\Rightarrow \) we can't do that, but it might happen with high probability.

Let's look at another example: alternate balanced & unbalanced split.
Repeat: if you could ensure that every pivot gives some [constant fraction of n]-split, you would get $\Theta(n \log n)$... possibly with terrible hidden constant.

we can't do that, but it might happen with high probability.

Let's look at another example: alternate balanced & unbalanced split.

$L(n) = 2U\left(\frac{n}{2}\right) + \Theta(n)$
Repeat: if you could ensure that every pivot gives some
[constant fraction of n]-split, you would get $O(n \log n)$.

...possibly with terrible hidden constant.

We can't do that, but it might happen with high probability.

Let's look at another example: alternate balanced & unbalanced split.

$L(n) = 2U\left(\frac{n}{2}\right) + \Theta(n)$

$L(n) = L(n-1) + \Theta(n)$
Repeat: if you could ensure that every pivot gives some
[constant fraction of n]-split, you would get $\Theta(n \log n)$
... possibly with terrible hidden constant

we can't do that, but it might happen with high probability.

Let's look at another example: alternate balanced & unbalanced split.

\[
\begin{align*}
L(n) &= 2U\left(\frac{n}{2}\right) + \Theta(n) \quad \text{lucky} \\
U(n) &= L(n-1) + \Theta(n) \quad \text{unlucky}
\end{align*}
\]
Repeat: if you could ensure that every pivot gives some constant fraction of n, you would get $\Theta(n \log n)$... possibly with terrible hidden constant.

\Rightarrow we can't do that, but it might happen with high probability.

Let's look at another example: alternate balanced & unbalanced split.

\[
\begin{align*}
L(n) &= 2U\left(\frac{n}{2}\right) + \Theta(n) \\
U(n) &= L(n-1) + \Theta(n)
\end{align*}
\]

lucky \quad \text{unlucky}

\[
L(n) = 2\left[L\left(\frac{n}{2} - 1\right) + \Theta\left(\frac{n}{2}\right) \right] + \Theta(n)
\]

\[
= 2L\left(\frac{n}{2} - 1\right) + \Theta(n)
\]
Repeat: if you could ensure that every pivot gives some [constant fraction of n]-split, you would get $\Theta(n \log n)$... possibly with terrible hidden constant.

We can't do that, but it might happen with high probability.

Let's look at another example: alternate balanced & unbalanced split.

$$L(n) = 2U\left(\frac{n}{2}\right) + \Theta(n)$$
$$U(n) = L(n-1) + \Theta(n)$$

Suppose you are lucky:

$$L(n) = 2\left[L\left(\frac{n}{2} - 1\right) + \Theta\left(\frac{n}{2}\right)\right] + \Theta(n)$$
$$= 2L\left(\frac{n}{2} - 1\right) + \Theta(n) = \Theta(n \log n)$$
Repeat: if you could ensure that every pivot gives some [constant fraction of n]-split, you would get $\Theta(n \log n)$ possibly with terrible hidden constant.

\Rightarrow we can't do that, but it might happen with high probability.

Let's look at another example: alternate balanced & unbalanced split.

\[
\begin{align*}
L(n) &= 2U\left(\frac{n}{2}\right) + \Theta(n) \\
U(n) &= L(n-1) + \Theta(n)
\end{align*}
\]

\[
\begin{align*}
L(n) &= 2[L\left(\frac{n-1}{2}\right) + \Theta(n)] + \Theta(n) \\
&= 2L\left(\frac{n-1}{2}\right) + \Theta(n)
\end{align*}
\]

A note: we can avoid specific "bad" distributions by permuting the input or random pivot selection.
Repeat: if you could ensure that every pivot gives some [constant fraction of n]-split, you would get \(\Theta(n \log n) \) possibly with terrible hidden constant we can't do that, but it might happen with high probability.

Let's look at another example: alternate balanced & unbalanced split.

\[
\begin{align*}
L(n) &= 2U\left(\frac{n}{2}\right) + \Theta(n) \\
U(n) &= L(n-1) + \Theta(n)
\end{align*}
\]

\[
\begin{align*}
\text{lucky} & \quad L(n) = 2[L\left(\frac{n}{2}-1\right) + \Theta\left(\frac{n}{2}\right)] + \Theta(n) \\
\text{unlucky} & \quad = 2L\left(\frac{n}{2}-1\right) + \Theta(n) = \Theta(n \log n)
\end{align*}
\]

A note: we can avoid specific "bad" distributions by permuting the input or random pivot selection. If all input permutations are equally likely, then picking the first element is fine.