ANALYSIS OF QUICKSORT

Let \(\{Z_1, Z_2, Z_3, \ldots, Z_n\} \) be the given data arranged in sorted order.
ANALYSIS OF QUICKSORT

Let \(\{Z_1, Z_2, Z_3, \ldots, Z_n\} \) be the given data arranged in sorted order.

\[
X_{ij} = \begin{cases}
1 & \text{if } Z_i \text{ is ever compared to } Z_j \\
0 & \text{otherwise}
\end{cases}
\]
ANALYSIS OF QUICKSORT

Let \(\{Z_1, Z_2, Z_3, \ldots, Z_n\} \) be the given data arranged in sorted order.

\[
X_{ij} = \begin{cases}
1 & \text{if } z_i \text{ is ever compared to } z_j \\
0 & \text{otherwise}
\end{cases}
\]

\[
X = \text{total # comparisons} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}
\]
ANALYSIS OF QUICKSORT

Let \(\{ z_1, z_2, z_3, \ldots, z_n \} \) be the given data arranged in sorted order.\(^\text{unknown}\)

\[X_{ij} = \begin{cases} 1 & \text{if } z_i \text{ is ever compared to } z_j \\ 0 & \text{otherwise} \end{cases} \]

\[X = \text{total \# comparisons} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]

Every \(x_i \) & \(x_j \) is compared once or never.
ANALYSIS OF QUICKSORT

Let \(\{Z_1, Z_2, Z_3, \ldots, Z_n\} \) be the given data arranged in sorted order.

\[
X_{ij} = \begin{cases}
1 & \text{if } z_i \text{ is ever compared to } z_j \\
0 & \text{otherwise}
\end{cases}
\]

\[
X = \text{total \# comparisons} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}
\]

Every \(x_i \& x_j \) is compared once or never.

We are interested in \(E[X] \).
$E[X] = E[\text{total # comparisons}] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right]$
$E[X] = E[\text{Total # comparisons}] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{\tilde{n}} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{\tilde{n}} E[X_{ij}]$

linearity of expectation
\[E[X] = E[\text{Total # comparisons}] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{\tilde{n}} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{\tilde{n}} E[X_{ij}] \]

define \(Z_{ij} = \{z_i \ldots z_j\} \) (subsequence of \(\{z_1 \ldots z_n\} \))
\[E[X] = E[\text{total # comparisons}] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \]

define \(Z_{ij} = \{z_i \ldots z_j\} \) (subsequence of \(\{z_1 \ldots z_n\}\))

\(z_i \) will be compared to \(z_j \) unless any \(z_k \) (\(i < k < j \)) is a pivot before them.

\(z_1, \ldots z_{i-1} \)

\&

\(z_{j+1} \ldots z_n \)

are irrelevant
\[E[X] = E[\text{Total \# comparisons}] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{\tilde{n}} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{\tilde{n}} E[X_{ij}] \]

Define \(Z_{ij} = \{z_i, \ldots, z_j\} \) (subsequence of \(\{z_1, \ldots, z_n\} \))

\(z_i \) will be compared to \(z_j \) unless any \(z_k \) \((i < k < j)\) is a pivot before them.

\[\begin{align*}
S_o \quad E[X_{ij}] &= P_r\{z_i \text{ is chosen first among } Z_{ij}\} \\
&+ P_r\{z_j \text{ is chosen first among } Z_{ij}\}
\end{align*} \]

\[E[Y] = \sum_t t \cdot P(Y=t) \]

For I.R.V.: \(E[Y] = P[Y=1] \)
\[E[X] = E[\text{Total # comparisons}] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{\tilde{n}} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{\tilde{n}} E[X_{ij}] \]

Define \(Z_{ij} = \{ z_i, \ldots, z_j \} \) (subsequence of \(\{ z_1, \ldots, z_n \} \))

\(z_i \) will be compared to \(z_j \) unless any \(z_k \) (\(i < k < j \)) is a pivot before them.

So \(E[X_{ij}] = \Pr \{ z_i \text{ is chosen first among } Z_{ij} \} \) + \(\Pr \{ z_j \text{ is chosen first among } Z_{ij} \} \) = \(\frac{2}{j-i+1} \)
\[E[X] = E[\text{Total \# comparisons}] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{\tilde{n}} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{\tilde{n}} E[X_{ij}] \]

define \(Z_{ij} = \{ z_i, \ldots, z_j \} \) (subsequence of \(\{ z_1, \ldots, z_n \} \))

\[z_i \text{ will be compared to } z_j \text{ unless any } z_k \text{ (} i < k < j \text{) is a pivot before them} \]

So \(E[X_{ij}] = \Pr \{ Z_i \text{ is chosen first among } Z_{ij} \} + \Pr \{ Z_j \text{ is chosen first among } Z_{ij} \} = \frac{2}{j-i+1} \)
\[E[X] = E\left[\text{Total # comparisons} \right] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \]

define \(Z_{ij} = \{ z_i \ldots z_j \} \) (subsequence of \(\{ z_1 \ldots z_n \} \))

\(z_i \) will be compared to \(z_j \) unless any \(z_k \) \((i < k < j)\) is a pivot before them

\(z_{j+1} \ldots z_n \) are irrelevant

So
\[E[X_{ij}] = \Pr \{ z_i \text{ is chosen first among } Z_{ij} \} + \Pr \{ z_j \text{ is chosen first among } Z_{ij} \} = \frac{2}{j-i+1} \]

\[E[X] = \sum_{i=1}^{n-1} \frac{2}{j-i+1} \]
\[E[X] = E[\text{Total # comparisons}] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \]

Define \(Z_{ij} = \{ z_i \ldots z_j \} \) (subsequence of \(\{ z_1 \ldots z_n \} \))

\(z_i \) will be compared to \(z_j \) unless any \(z_k \) \((i < k < j) \) is a pivot before them.

So \(E[X_{ij}] = \Pr \{ Z_i \text{ is chosen first among } Z_{ij} \} + \Pr \{ Z_j \text{ is chosen first among } Z_{ij} \} = \frac{2}{j-i+1} \)

\[E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{t=1}^{n-i} \frac{2}{t+1} < \sum_{i=1}^{n-1} \sum_{t=1}^{n} \frac{2}{t} \]
\[E[X] = E[\text{Total \# comparisons}] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \]

define \(Z_{ij} = \{ z_i, \ldots, z_j \} \) (subsequence of \(\{ z_1, \ldots, z_n \} \))

\[z_i \text{ will be compared to } z_j \text{ unless any } z_k \ (i < k < j) \text{ is a pivot before them} \]

So \(E[X_{ij}] = \Pr \{ Z_i \text{ is chosen first among } Z_{ij} \} \]
\[+ \Pr \{ Z_j \text{ is chosen first among } Z_{ij} \} = \frac{2}{j-i+1} \]

\[E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{t=1}^{n-i} \frac{2}{t+1} < \sum_{i=1}^{n-1} \sum_{t=1}^{n} \frac{2}{t} = \sum_{i=1}^{n-1} O(\log n) \]
\[E[X] = \mathbb{E}[\text{Total # comparisons}] = \mathbb{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}[X_{ij}] \]

Define \(Z_{ij} = \{z_i, \ldots, z_j\} \) (subsequence of \(\{z_1, \ldots, z_n\} \))

\(z_i \) will be compared to \(z_j \) unless any \(z_k \) \((i < k < j)\) is a pivot before them

So \[E[X_{ij}] = \Pr\{Z_i \text{ is chosen first among } Z_{ij}\} + \Pr\{Z_j \text{ is chosen first among } Z_{ij}\} = \frac{2}{j-i+1} \]

\[E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{t=1}^{n-i} \frac{2}{t+1} < \sum_{i=1}^{n-1} \sum_{t=1}^{n} \frac{2}{t} = \sum_{i=1}^{n-1} O(\log n) = O(n \log n) \]