(binary) MAX-heap

Rules:
- last row filled from left
- other rows full
- parent > children

\[\text{parent}(i) = \left\lfloor \frac{i}{2} \right\rfloor \]

\[\text{left-child}(i) = 2i \]

\[\text{right-child}(i) = 2i + 1 \]

Notice every subtree is also a heap

1 2 3 4 5 6 7 8 9 10
16 14 10 8 7 9 3 2 4 1
How does this relate to sorting?

Largest element is on top.
2nd largest is in level 2.
3rd largest is

4 in level 2
OR
4 in level 3 & child of 2nd

getting messy
extract MAX
attempt to extract MAX & restore heap

now what? failed
attempt to extract MAX & restore heap

if we can do this in $O(\log n)$ time, we have a sorting algorithm
- extract MAX
- place rightmost leaf at top
 (strange move... it's small!)
- extract MAX
- place rightmost leaf at top
 (strange move... it's small!)
- swap top w/ largest child
 (locally restore parent->child)
- extract MAX
- place rightmost leaf at top
 (strange move... it’s small!)
- swap top w/ largest child
 (locally restore parent > child)
- repeat downward while needed
- extract MAX
- place rightmost leaf at top (strange move... it's small!)
- swap top w/ largest child (locally restore parent>child)
- repeat downward while needed
height of heap? \(\Theta(\log n) \)

Ready to extract new \text{MAX}

- extract \text{MAX}
- place rightmost leaf at top
 (strange move... it's small!)
- swap top w/ largest child
 (locally restore parent \text{\&} child)
- repeat downward while needed

\text{time?}
To work in-place when extracting max we can swap it w/ leaf.

Instead of deleting this node, just ignore it.

Notice max is stored at the max index of our array.
To work in-place when extracting max we can swap it w/ leaf.
To work in-place when extracting MAX we can swap it w/ leaf.
To work in-place when extracting max we can swap it w/ leaf.
To work in-place when extracting max we can swap it with leaf.
To work in-place when extracting max we can swap it w/ leaf.
To work in-place when extracting max we can swap it w/ leaf.
To work in-place when extracting max we can swap it w/ leaf.
To work in-place when extracting max we can swap it w/ leaf.
To work in-place when extracting max we can swap it w/ leaf.
To work in-place when extracting max we can swap it w/ leaf.
To work in-place when extracting \text{MAX} we can swap it with a leaf.
To work in-place when extracting max we can swap it w/ leaf.
To work in-place when extracting MAX we can swap it w/ leaf.
To work in-place when extracting MAX we can swap it w/ leaf.
To work in-place when extracting max we can swap it with leaf.
To work in-place when extracting max we can swap it w/ leaf.
To work in-place when extracting MAX we can swap it w/ leaf.
To work in-place when extracting \(\text{MAX} \) we can swap it with a leaf.
To work in-place when extracting max we can swap it with leaf.
So we can extract MAX & maintain a heap, in $O(\log n)$ time.

Do this n times $\implies O(n \log n)$ sorting

But how did we have a heap in the first place?

Start with unsorted elements
So we can extract MAX & maintain a heap, in $O(\log n)$ time.

Do this n times $\rightarrow O(n \log n)$ sorting

But how did we have a heap in the first place?

```
\begin{array}{cccc}
  & 2 & & \\
 4 & 10 & 3 & \\
 7 & 9 & 1 & \\
 8 & 16 & 14 & 1
\end{array}
```

make heap of size 1
So we can extract MAX & maintain a heap, in $O(\log n)$ time.

Do this n times $\rightarrow O(n \log n)$ sorting

But how did we have a heap in the first place?

trivially get heap of size 2, possibly w/ a swap
So we can extract MAX & maintain a heap, in $O(\log n)$ time.

Do this n times $\rightarrow O(n \log n)$ sorting

But how did we have a heap in the first place?

generally, insert new element as rightmost leaf in lowest level
So we can extract MAX & maintain a heap, in $O(\log n)$ time.

Do this n times $\Rightarrow O(n \log n)$ sorting

But how did we have a heap in the first place?

\[\begin{array}{c}
 2 \\
 4 \quad 10 \quad 3 \\
 7 \quad 8 \quad 16 \\
\end{array} \quad \begin{array}{c}
 14 \\
 1 \quad 9 \\
\end{array} \]

then repeat swapping while required
So we can extract MAX & maintain a heap, in $O(\log n)$ time.

Do this n times $\rightarrow O(n \log n)$ sorting

But how did we have a heap in the first place?
So we can extract MAX & maintain a heap, in $O(\log n)$ time.

\[\text{do this } n \text{ times} \rightarrow O(n \log n) \text{ sorting} \]

But how did we have a heap in the first place?
So we can extract MAX & maintain a heap, in $O(\log n)$ time.

Do this n times $\rightarrow O(n \log n)$ sorting

But how did we have a heap in the first place?
So we can extract MAX & maintain a heap, in $O(\log n)$ time.

Do this n times $\rightarrow O(n \log n)$ sorting

But how did we have a heap in the first place?
So we can extract MAX & maintain a heap, in $O(\log n)$ time.

"do this \(n \) times $\Rightarrow O(n \log n)$ sorting

But how did we have a heap in the first place?

e tc
When inserting a new leaf (wlog R) there is a problem iff \(R > P \)

By swapping \(R \leftrightarrow P \) we have a heap in subtree(R) \((R > P > L) \)

...but we may have a new problem iff \(R > G \) then \(R \leftrightarrow G \). \(G > P > L : \text{OK} \) & \(R > G > X : \text{OK} \)
R will move up some path until smaller than node above.

That path will "shift down" so every subtree has a larger root.

\[O(n \log n) \text{ time per node} \]

and in-place: iterate on array. Only swaps used.
(another) In-place heap-build

Iterate from end of array from right to left on each level, starting at bottom
In-place heap-build

Iterate from end of array

from right to left

on each level, starting at bottom

heapify each node \(x \)

4, i.e., subtree at \(x \).
Heapify x:

// can assume each child is a heap.

Might have to swap x w/ one of its children & further down levels
Heapify x:

- Can assume each child is a heap.
- Might have to swap x with one of its children & further down levels.

Time for $x = O(\text{height}(x))$

Overall $O(n \log n)$
Time = \(O(h(x)) \)

Total time: \(O\left(\sum_{\text{all } x} h(x)\right) \)

\[\sum \leq \frac{n}{2} \cdot 1 + \frac{n}{4} \cdot 2 + \frac{n}{8} \cdot 3 + \cdots + 2 \cdot ((\log n) - 1) + 1 \cdot \log n \]
\[\sum \leq \frac{n}{2} \cdot 1 + \frac{n}{4} \cdot 2 + \frac{n}{8} \cdot 3 + \ldots + 2 \cdot (\log n - 1) + 1 \cdot \log n \]

\[= \sum_{h=1}^{\log n} \frac{n}{2^h} \cdot h = n \cdot \sum \frac{h}{2^h} \leq n \frac{1/2}{(1-1/2)^2} = O(n) \]

\[\text{Time} = O(h(x)) \]

\[\text{Total time: } O \left(\sum_{\text{all } x} h(x) \right) \]