(directed) graph s.t. every vertex can be reached from every vertex.

- note -

\[\begin{array}{l}
\text{Not necessarily true that any 2 vertices reach each other with a "simple" cycle.}
\end{array} \]
STRONGLY CONNECTED COMPONENTS

- No longer strongly connected
- Chain reaction: several vertices no longer mutually reachable
- We get groups (components) each of which is strongly connected
The new graph must be a DAG
(any cycle would merge components)
RECOGNIZING
STRONGLY CONNECTED COMPONENTS
we know that no W_i can be reached from outside W, in G.

(W wouldn't be 1st) OR (we'd have a cycle)

No W_i can reach any vertex outside W in G^T (= G w/ reversed edges)

If we run DFS on G, some vertex W_i will finish last.

Take W_i and DFS(w_i) on $G^T \rightarrow$ finds W!
Once again, some w_i will finish last, on any DFS run on G.

If not w_i, then some equivalent vertex in a component that could fit first in topological sort

No diff
Once again, some w_i will finish last, on any DFS run on G.

\Rightarrow W may explore other areas which will finish before backtracking (i.e. before w_i finishes).

\Rightarrow no vertex will ever "discover" w_i unless it is some w_j.

We don't know what w_i or W is in advance. All we know is that on any DFS on G, the vertex with the last finishing time belongs to the first component in topological order.
- DFS on G
- List finishing times
- Some vertex will be last. Call it w_i
- Construct G^T
- DFS starting from w_i on G^T.

G

G^T
- DFS on G
 - G list finishing times
 - some vertex will be last. Call it \(w_i \).

- Construct \(G^T \)
- DFS starting from \(w_i \) on \(G^T \).
 - will return exactly the vertices in \(W \).
 (same SCC as \(w_i \))

\[\text{what remains?} \]
\[\begin{align*}
\begin{cases}
\text{Some unexplored subgraph of } G^T. \text{ All } w_i \text{ marked.} \\
\text{Continue DFS w/ } X_i \ldots \\
\text{...then } Y_i, Z_i
\end{cases}
\]