Most of us would rather not deal with “minor” details
Most of us would rather not deal with "minor" details such as whether it takes 2, 3, 7, or 53 instructions/operations to compare & swap two numbers & re-iterate.
Most of us would rather not deal with "minor" details such as
• whether it takes 2, 3, 7, or 53 instructions/operations
to compare & swap two numbers & re-iterate. e.g. $\frac{1}{2}n^2 + \frac{1}{2}n$
Most of us would rather not deal with "minor" details such as

- whether it takes 2, 3, 7, or 53 instructions/operations
to compare & swap two numbers & re-iterate. e.g. \(\frac{1}{2}n^2 + \frac{1}{2}n\)

- the size of non-leading terms
Most of us would rather not deal with "minor" details such as

- whether it takes 2, 3, 7, or 53 instructions/operations
to compare & swap two numbers & re-iterate. e.g. $\frac{1}{2}n^2 + \frac{1}{2}n$

- the size of non-leading terms e.g. $\frac{1}{2}n^2 + \frac{1}{2}n$
Most of us would rather not deal with "minor" details such as

- whether it takes 2, 3, 7, or 53 instructions/operations
to compare & swap two numbers & re-iterate. e.g. $\frac{1}{2}n^2 + \frac{1}{2}n$

- the size of non-leading terms e.g. $\frac{1}{2}n^2 + \frac{1}{2}n$

For theory, the fun (and easier) part is to deal with large n.
Most of us would rather not deal with "minor" details such as
- whether it takes 2, 3, 7, or 53 instructions/operations
to compare & swap two numbers & re-iterate. e.g. \(\frac{1}{2}n^2 + \frac{1}{2}n \)
- the size of non-leading terms e.g. \(\frac{1}{2}n^2 + \frac{1}{2}n \)

For theory, the fun (and easier) part is to deal with large \(n \)

so what we care about is \(\frac{1}{2}n^2 + \frac{1}{2}n \approx n^2 \)
Most of us would rather not deal with "minor" details such as

- whether it takes 2, 3, 7, or 53 instructions/operations
to compare & swap two numbers & re-iterate. e.g. $\frac{1}{2}n^2 + \frac{1}{2}n$
- the size of non-leading terms e.g. $\frac{1}{2}n + \frac{1}{2}n$

For theory, the fun (and easier) part is to deal with large n
so what we care about is $\frac{1}{2}n^2 + \frac{1}{2}n \sim n^2$

This leads to Θ-notation
Θ-notation

\(F(n) = 53n^2 + 107n - 6 = \Theta(n^2) \) just look at the dominating term.
Θ-notation

F(n) = 53n^2 + 107n - 6 = \Theta(n^2)

Just look at the dominating term.

\[an^2 + bn + c \]

Whatever b and c are, eventually n will grow large enough that \(bn + c \ll an^2 \).
\[F(n) = 53n^2 + 107n - 6 = \Theta(n^2) \]

just look at the dominating term.

 Whatever \(b \) an \(c \) are, eventually \(n \) will grow large enough that \(bn + c \ll an^2 \)

The same goes for \(a \): it is a constant and thus overshadowed by any function of \(n \) (that grows \(\Rightarrow \infty \))
\(f(n) = 53n^2 + 107n - 6 = \Theta(n^2) \)

Whatever \(b \) and \(c \) are, eventually \(n \) will grow large enough that \(bn + c \ll an^2 \).

The same goes for \(a \): it is a constant and thus overshadowed by any function of \(n \) (that grows \(\to \infty \)).
Θ-notation can also be called "big-O" notation.

Formally, \(f(n) = O(g(n)) \) or \(f(n) \in O(g(n)) \)

if for all \(n > n_0 \) s.t. \(0 \leq f(n) \leq c \cdot g(n) \)

there is a constant \(c \) \(\rightarrow \) upper bound.
\(\Theta \)-notation can also be called "big-O" notation.

Formally, \(f(n) = O(g(n)) \) or \(f(n) \in O(g(n)) \)
if for all \(n > n_0 \) such that \(0 \leq f(n) \leq c \cdot g(n) \)
where there is a constant \(c \) upper bound.

\(g(n) \) is always a simplification of \(f(n) \).
\(\Theta \)-notation can also be called "big-O" notation.

Formally, \(f(n) = O(g(n)) \) or \(f(n) \in O(g(n)) \)

if for all \(n > n_0 \) s.t. \(0 \leq f(n) \leq c \cdot g(n) \)

there is a constant \(c \)

\(g(n) \) is always a simplification of \(f(n) \).

is an asymptotic upper bound for \(f(n) \).

i.e. to within a const. factor, for large values
\[f(n) = O(g(n)) \quad \Rightarrow \quad f(n) \leq c \cdot g(n). \]
\[f(n) = O(g(n)) \quad \Rightarrow \quad f(n) \leq c \cdot g(n). \]

\(\Omega \) gives a lower bound:
\[f(n) = \Omega(g(n)) \quad \Rightarrow \quad f(n) \geq c \cdot g(n). \]

Again, for all \(n > n_0 \), exists some \(c \).
\(f(n) = \Omega(g(n)) \quad \rightarrow \quad f(n) \leq c \cdot g(n) \).

\(\Omega \) gives a lower bound: \(f(n) = \Omega(g(n)) \quad \rightarrow \quad f(n) \geq c \cdot g(n) \)

Again, for all \(n > n_0 \), exists some \(c \)...

\(\Theta \) is the combination of \(O \) & \(\Omega \)
\[f(n) = O(g(n)) \implies f(n) \leq c \cdot g(n). \]

\(\Omega \) gives a lower bound: \[f(n) = \Omega(g(n)) \implies f(n) \geq c \cdot g(n) \]
Again, for all \(n > n_0 \), exists some \(c \).

\(\Theta \) is the combination of \(O \) & \(\Omega \):
\[f(n) = \Theta(g(n)) \quad \text{if} \quad f(n) = O(g(n)) \quad \text{and} \quad f(n) = \Omega(g(n)) \]
\(f(n) = O(g(n)) \implies f(n) \leq c \cdot g(n) \).

\(\Omega \) gives a lower bound:

\[f(n) = \Omega(g(n)) \implies f(n) \geq c \cdot g(n) \]

Again, for all \(n > n_0 \), exists some \(c \)...

\(\Theta \) is the combination of \(O \& \Omega \)

\[f(n) = \Theta(g(n)) \quad \text{if} \quad f(n) = O(g(n)) \quad \text{AND} \quad f(n) = \Omega(g(n)) \]

i.e.

\[0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \]

for all \(n > n_0 \)...
\[f(n) = O(g(n)) \]
\[f(n) = \Theta(h(n)) \]
\[f(n) = \Omega(h(n)) \]
$f(n) = \Theta(g(n))$
If you want a better upper bound, it will only be valid for larger n.

$c_3 < c_2$

$f(n) = O(g(n))$
\[f(n) = \Theta(g(n)) \]
Prove \(\frac{1}{2}n^2 - 3n = \Theta(n^2) \)
Prove \(\frac{1}{2}n^2 - 3n = \Theta(n^2) \)

Find \(c_1, c_2, n_0 \) s.t.
Prove \(\frac{1}{2} n^2 - 3n = \Theta(n^2) \)

Find \(c_1, c_2, n_0 \) s.t. \(c_1 n^2 \leq \frac{1}{2} n^2 - 3n \leq c_2 n^2 \) for all \(n > n_0 \).
Prove $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

Find c_1, c_2, n_0 s.t. $c_1 n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2 n^2$ for all $n > n_0$

$$c_1 \leq \frac{\frac{1}{2}}{n} - \frac{3}{n} \leq c_2$$
Prove $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

Find c_1, c_2, n_0 s.t. $c_1 n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2 n^2$ for all $n \geq n_0$.

$c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$

For $n \geq 1 : c_2 \geq \frac{1}{2}$ works.
Prove $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

Find c_1, c_2, n_0 s.t. $c_1 n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2 n^2$ for all $n > n_0$

$c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$

For $n > 1 : c_2 \gg \frac{1}{2}$ works.

For $n > 7 : c_1 \leq \frac{1}{14}$
Prove \(\frac{1}{2}n^2 - 3n = \Theta(n^2) \)

Find \(c_1, c_2, n_0 \) s.t. \(c_1 n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2 n^2 \) for all \(n > n_0 \)

\[
c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2
\]

For \(n > 1 \) : \(c_2 \geq \frac{1}{2} \) works.

For \(n > 7 \) : \(c_1 \leq \frac{1}{14} \) (or, for \(n > 30 \) : \(c_1 \leq 0.4 \))

\((as \ n_0 \to \infty, \ c_1 \to \frac{1}{2})\)
Prove \(\frac{1}{2} n^2 - 3n = \Theta(n^2) \)

Find \(c_1, c_2, n_0 \) s.t. \(c_1 n^2 \leq \frac{1}{2} n^2 - 3n \leq c_2 n^2 \) for all \(n > n_0 \)

\[c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2 \]

For \(n > 1 \) : \(c_2 \geq \frac{1}{2} \) works.

For \(n > 7 \) : \(c_1 \leq \frac{1}{14} \) (or, for \(n > 30 \) : \(c_1 \leq 0.4 \))

\(\) (as \(n_0 \to \infty \), \(c_1 \to \frac{1}{2} \))

Prove \(6n^3 \neq \Theta(n^2) \)
Prove $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

5 find c_1, c_2, n_0 s.t. $c_1 n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2 n^2$ for all $n > n_0$.

$c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$

For $n > 1$: $c_2 \geq \frac{1}{2}$ works.

For $n > 7$: $c_1 \leq \frac{1}{14}$ (or, for $n > 30$: $c_1 \leq 0.4$)

(as $n_0 \to \infty$, $c_1 \to \frac{1}{2}$)

Prove $6n^3 \neq \Theta(n^2)$

5 find c_1, c_2, n_0 s.t. $c_1 n^2 \leq 6n^3 \leq c_2 n^2$
Prove \(\frac{1}{2} n^2 - 3n = \Theta(n^2) \)

Find \(c_1, c_2, n_0 \) s.t. \(c_1 n^2 \leq \frac{1}{2} n^2 - 3n \leq c_2 n^2 \) for all \(n \gg n_0 \)

\(c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2 \)

For \(n \gg 1 \) : \(c_2 \gg \frac{1}{2} \) works.

For \(n \gg 7 \) : \(c_1 \leq \frac{1}{14} \) (or, for \(n \gg 30 \) : \(c_1 \leq 0.4 \))

(as \(n_0 \to \infty \), \(c_1 \to \frac{1}{2} \))

Prove \(6n^3 \neq \Theta(n^2) \)

Find \(c_1, c_2, n_0 \) s.t. \(c_1 n^2 \leq 6n^3 \leq c_2 n^2 \)

Trivially true for \(n \gg 1 \) & \(c_1 \leq 6 \)
CLRS 46

Prove \(\frac{1}{2} n^2 - 3n = \Theta(n^2) \)

5. Find \(c_1, c_2, n_0 \) s.t. \(c_1 n^2 \leq \frac{1}{2} n^2 - 3n \leq c_2 n^2 \) for all \(n > n_0 \)

\[c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2 \]

For \(n \geq 1 \) : \(c_2 > \frac{1}{2} \) works.

For \(n \geq 7 \) : \(c_1 \leq \frac{1}{14} \) (or, for \(n \geq 30 \) : \(c_1 \leq 0.4 \))

(or, as \(n_0 \to \infty \), \(c_1 \to \frac{1}{2} \))

Prove \(6n^3 \neq \Theta(n^2) \)

5. Find \(c_1, c_2, n_0 \) s.t. \(c_1 n^2 \leq 6n^3 \leq c_2 n^2 \)

trivially true for \(n \geq 1 \) & \(c_1 \leq 6 \)

R.h.s. : \(6n \leq c_2 \Rightarrow n \leq \frac{c_2}{6} \) : not true for any constant \(c_2 \) and all \(n \).
Is $50 \cdot n = O(n^2)$?
Is $50 \cdot n = O(n^2)$?
Is $50 \cdot n = O(n^2)$?

$50 \cdot n \leq c \cdot n^2$

$50 \leq c \cdot n$
Is \(50 \cdot n = O(n^2) \) ?

\[
\begin{align*}
50 \cdot n & \leq c \cdot n^2 \\
50 & \leq c \cdot n \\
\end{align*}
\]

\(n=1 \) \(c=50 \)

\(n=50 \) \(c=1 \)
Is $50 \cdot n = O(n^2)$?

Yes

$50 \cdot n \leq c \cdot n^2$

$50 \leq c \cdot n$

$n=1$ $c=50$

$(n=50$ $c=1)$
Is \(50 \cdot n = O(n^2) \)?

Yes, but also \(50 \cdot n = O(n) \)

\[
egin{align*}
50 \cdot n & \leq c \cdot n^2 \\
\text{for } n=1 \quad c=50 \\
50 & \leq c \cdot n \\
\text{for } n=50 \quad c=1
\end{align*}
\]

\(50 \cdot n \leq c \cdot n \) \quad \text{for all } n.
Is $50 \cdot n = O(n^2)$?

Yes, but also $50 \cdot n = O(n)$

$50 \cdot n = O(n^2)$ is not wrong; it's just not very accurate.
Some basic functions: \(\log n, \sqrt{n}, n, n \log n, n^2, n^3, 2^n, n! \)

\[\log n = ?(\sqrt{n}) \quad n^2 = ?(n \log n) \]
Some basic functions: $\log n$, \sqrt{n}, n, $n \log n$, n^2, n^3, 2^n, $n!$

$\log n = O(\sqrt{n})$
$n^2 = \Omega(n \log n)$
Some basic functions: $\log n$, \sqrt{n}, n, $n \log n$, n^2, n^3, 2^n, $n!$

$\log n = O(\sqrt{n}) \quad n^2 = \Omega(n \log n)$

Try $n^{1-\varepsilon}$, $3^{n-\varepsilon}$, $\log(n^2)$, $\log^2 n$, $2^{\log_4 n}$, $4^{\log_2 n}$, n, n^2, n^2

(for $\varepsilon > 0$)

compare 2^n v. $3^{n-\varepsilon}$

$\log n$ v. $\log(n^2)$

$\log(n^2)$ v. $\log^2 n$

$2^{\log_4 n}$ v. n^k (k=?)

et cetera
Recall that we determined that Insertion sort costs $\sum_{j=1}^{n} j$

This is $\Theta(\cdot)$
Recall that we determined that Insertion sort costs \(\sum_{j=1}^{n} j \)
This is \(\Theta(n^2) \)
Does it always cost this?
Recall that we determined that Insertion sort costs $\sum_{j=1}^{n} j$

This is $\Theta(n^2)$

Does it always cost this? No. This is the worst case.
Recall that we determined that Insertion sort costs $\sum_{j=1}^{n} j$.

This is $\Theta(n^2)$.

Does it always cost this? No. This is the worst case.

We could also discuss the "best case": that is less interesting.

Any algo can be expanded to handle some input I in $O(|I|)$ time.
Recall that we determined that Insertion sort costs $\sum_{j=1}^{n} j$

This is $\Theta(n^2)$

Does it always cost this? NO. This is the worst case.

We could also discuss the "best case" : that is less interesting.

Any algo can be expanded to handle some input I in $O(I)$ time.

Anyway, Insertion sort would take $O(n)$ time if ... ?
Recall that we determined that Insertion sort costs $\sum_{j=1}^{n} j$
This is $\Theta(n^2)$
Does it always cost this? NO. This is the worst case.

We could also discuss the "best case": that is less interesting.

Any algo can be expanded to handle some input I in $O(|I|)$ time.

Anyway, Insertion sort would take $O(n)$ time if the input was already sorted.
Recall that we determined that Insertion sort costs $\sum_{j=1}^{n} j$.
This is $\Theta(n^2)$.

Does it always cost this? NO. This is the worst case.

We could also discuss the "best case" : that is less interesting.

Any algo can be expanded to handle some input I in $O(|I|)$ time.

Anyway, Insertion sort would take $O(n)$ time if ...? the input was already sorted.

Insertion sort takes $\Omega(n)$ time

but the $O(n^2)$-time bound is "tight".
"This algorithm ... takes $O(n^2)$ time"
... runs in $O(n^2)$ time"
... has a time complexity of $O(n^2)$"
... runs in quadratic time
Phrasing

"This algorithm ... takes $O(n^2)$ time"
... runs in $O(n^2)$ time"
... has a time complexity of $O(n^2)$"
... runs in quadratic time,
and this is known to be tight."
This algorithm... ... takes $O(n^2)$ time
... runs in $O(n^2)$ time
... has a time complexity of $O(n^2)$
... runs in quadratic time,
and this is known to be tight.

This problem... ... has a quadratic-time solution
and there is an $\Omega(n \log n)$ lower-bound
... is known to require $\Omega(n^2)$ time."
"This algorithm takes $O(n^2)$ time"
... runs in $O(n^2)$ time"
... has a time complexity of $O(n^2)$"
... runs in quadratic time,
and this is known to be tight".

"This problem has a quadratic-time solution
and there is an $\Omega(n \log n)$ lower-bound
... is known to require $\Omega(n^2)$ time."

Problems have upper bounds and lower bounds

Algorithms have equal or weaker bounds
This algorithm... takes $O(n^2)$ time
... runs in $O(n^2)$ time
... has a time complexity of $O(n^2)$
... runs in quadratic time,
and this is known to be tight.

This problem... has a quadratic-time solution
and there is an $\Omega(n \log n)$ lower-bound
... is known to require $\Omega(n^2)$ time.

Problems have upper bounds and lower bounds
Algorithms have equal or weaker bounds
* can have upper bounds that are "tight"
 but that implies nothing for the lower bound of the problem
Sometimes big-O is used to describe lower order terms.

\[2n^2 + 3n + 1 = 2n^2 + O(n). \]

we can continue to say this is $\Theta(n^2)$
More asymptotic notation although less common.
More asymptotic notation although less common.

Recall that

\[\Theta : = \]
\[\mathcal{O} : \leq \]
\[\Omega : \geq \]
More asymptotic notation although less common.

Recall that

\[\Theta \quad = \quad \mathcal{O} \quad \leq \quad \Omega \quad \geq \]

\text{little-o} \rightarrow < \quad \text{e.g.} \quad f(n) = o(g(n)) \quad \text{if for any constant } c \text{ there exists large enough } n_0 \text{ s.t. } 0 \leq f(n) < c \cdot g(n) \quad \text{for all } n \geq n_0

\left[0 \leq \frac{1}{c} f(n) < g(n) \right]
More asymptotic notation although less common.

Recall that

\[\Theta : = \]
\[O : = \leq \]
\[\Omega : = \geq \]

\textbf{little-o} \rightarrow < \quad \text{e.g. } f(n) = o(g(n)) \quad \text{if for any constant } c \quad \text{there exists large enough } n_0 \quad \text{s.t.} \quad 0 \leq f(n) < c \cdot g(n) \quad \text{for all } n \geq n_0
More asymptotic notation although less common.

Recall that

\[\Theta = \Omega \leq \Omega \geq \Omega \]

\text{little-o} \rightarrow < \quad \text{e.g. } f(n) = o(g(n)) \quad \text{if for any constant } c \text{ there exists large enough } n_0 \text{ s.t. } 0 \leq f(n) < c \cdot g(n) \quad \text{for all } n > n_0

\text{little-\omega} \rightarrow >

In other words, once again in the world of very large \(n \), \(f(n) \) is not asymptotically equivalent to \(g(n) \). No matter what constant we multiply \(f(n) \) with it won't exceed \(g(n) \)
Example of little-o

\[5n = o(n^2) \]
Example of little-o

\[5n = o(n^2) \] \quad \text{for any constant } c

\[5 \cdot c \cdot n < n^2 \quad \text{when } n > 5 \cdot c \]
Example of little-o

$$5n = o(n^2)$$

\[
\text{For any constant } c \\
5 \cdot c \cdot n < n^2 \quad \text{when } n > 5 \cdot c
\]

In some sense \(f(n) = o(g(n)) \) means \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)
Example of little-o

$$5n = o(n^2) \quad \text{\text{\{For any constant } c \text{\}}}$$

$$5 \cdot c \cdot n < n^2 \quad \text{when } n > 5 \cdot c$$

In some sense, $f(n) = o(g(n))$ means

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

ω is similar

$$\frac{1}{10}n^3 = \omega(n^2) \quad \text{\text{\{For any } c \text{, there is some } n_0 \text{ s.t.}}$$

$$\frac{1}{10}n^3 > c \cdot n^2 \quad \text{for all } n > n_0$$
Example of little-o

\[5n = o(n^2) \] \quad \text{\textit{for any constant } } c \quad \text{ where } n > 5 \cdot c

\[5 \cdot c \cdot n < n^2 \]

In some sense, \(f(n) = o(g(n)) \) means \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)

\(\frac{1}{10} n^3 = o(n^2) \)

\[\frac{1}{10} n^3 > c \cdot n^2 \quad \text{for all } n \geq n_0 \]

Indeed, given \(c \), choose \(n \geq 10 \cdot c \)
Example of little-o

\[5n = o(n^2) \] \text{ if and only if for any constant } c \text{,}
\[5 \cdot c \cdot n < n^2 \text{ when } n > 5 \cdot c \]

In some sense \(f(n) = o(g(n)) \) means \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)

\(w \) is similar \(\frac{1}{10} n^3 = w(n^2) \) \text{ if and only if for any } c, \text{ there is some } n_0 \text{ s.t.}
\[\frac{1}{10} n^3 > c \cdot n^2 \text{ for all } n > n_0 \]

Indeed, given \(c \), choose \(n > 10 \cdot c \)

If \(f(n) = o(g(n)) \), then \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)
Example of little-o

\[5n = o(n^2) \] \text{For any constant } c \quad 5c \cdot n < n^2 \text{ when } n > 5c

In some sense \(f(n) = o(g(n)) \) means \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)

\(w \) is similar \(\frac{1}{10}n^3 = o(n^2) \) \text{For any } c, \text{ there is some } n_0 \text{ s.t.} \frac{1}{10}n^3 > c \cdot n^2 \text{ for all } n > n_0 \)

Indeed, given \(c \), choose \(n > 10c \)

If \(f(n) = o(g(n)) \), \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)

Notice \(f(n) = o(g(n)) \Leftrightarrow g(n) = o(f(n)) \)
see CLRS 51 for intuitive transitivity rules.

So, what do we accomplish with Θ-notation?
see CLRS 51 for intuitive transitivity rules.

So, what do we accomplish with Θ-notation?

- we can understand behavior of algorithms for large input.
 (same for complexity of problems)
see CLRS 51 for intuitive transitivity rules.

So, what do we accomplish with Θ-notation?

- We can understand behavior of algorithms for large input. (Same for complexity of problems)
- We can analyze algorithms in a hardware/implementation-independent way.
see CLRS 51 for intuitive transitivity rules.

So, what do we accomplish with \(\Theta \)-notation?

- We can understand behavior of algorithms for large input.
 (same for complexity of problems)
- We can analyze algorithms in a hardware/implementation-independent way.

- Compare insertion sort on the fastest machine, coded by the best
 vs. some \(O(n \log n) \)-time algorithm on a 20-yr-old computer,
 coded by me.

 For large \(n \), I will win.